M. Ahmad, Shahbaz Ahmed, M. Kakakhel, Shakeel ur Rehman, S. Mirza
{"title":"放射治疗中异质界面的剂量摄动-基于EGSnrc的蒙特卡罗研究","authors":"M. Ahmad, Shahbaz Ahmed, M. Kakakhel, Shakeel ur Rehman, S. Mirza","doi":"10.1109/ICET.2016.7813235","DOIUrl":null,"url":null,"abstract":"Radiotherapy dose computation in the presence of tissue heterogeneities presents a challenge for the treatment planning system (TPS). This study presents a Monte Carlo (MC) investigation of dose perturbation due to various kinds of heterogeneities (soft tissue interfaces with bone, air, lung and metallic implants) for a range of clinically useful photon energies and field sizes. EGSnrc MC radiation transport code has been used for linear accelerator head modeling and phantom dose calculations. Dose perturbations were quantified in terms of forward- and backscatter factors as well as inside the heterogeneity of low densities for various field sizes including 5 × 5 cm2, 10 × 10 cm2 and 15 × 15 cm2. For lung heterogeneity, both under-dosage and over-dosage has been assessed in relation to the field sizes and energies. These simulations confirm under-dosage in the case of lung heterogeneity for small field sizes, which increases with the energy. However, lung tissues reflect an overdose with smaller energies and larger field sizes.","PeriodicalId":285090,"journal":{"name":"2016 International Conference on Emerging Technologies (ICET)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dose perturbations at heterogeneous interfaces in radiotherapy — An EGSnrc based Monte Carlo investigation\",\"authors\":\"M. Ahmad, Shahbaz Ahmed, M. Kakakhel, Shakeel ur Rehman, S. Mirza\",\"doi\":\"10.1109/ICET.2016.7813235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radiotherapy dose computation in the presence of tissue heterogeneities presents a challenge for the treatment planning system (TPS). This study presents a Monte Carlo (MC) investigation of dose perturbation due to various kinds of heterogeneities (soft tissue interfaces with bone, air, lung and metallic implants) for a range of clinically useful photon energies and field sizes. EGSnrc MC radiation transport code has been used for linear accelerator head modeling and phantom dose calculations. Dose perturbations were quantified in terms of forward- and backscatter factors as well as inside the heterogeneity of low densities for various field sizes including 5 × 5 cm2, 10 × 10 cm2 and 15 × 15 cm2. For lung heterogeneity, both under-dosage and over-dosage has been assessed in relation to the field sizes and energies. These simulations confirm under-dosage in the case of lung heterogeneity for small field sizes, which increases with the energy. However, lung tissues reflect an overdose with smaller energies and larger field sizes.\",\"PeriodicalId\":285090,\"journal\":{\"name\":\"2016 International Conference on Emerging Technologies (ICET)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Emerging Technologies (ICET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICET.2016.7813235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Emerging Technologies (ICET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICET.2016.7813235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dose perturbations at heterogeneous interfaces in radiotherapy — An EGSnrc based Monte Carlo investigation
Radiotherapy dose computation in the presence of tissue heterogeneities presents a challenge for the treatment planning system (TPS). This study presents a Monte Carlo (MC) investigation of dose perturbation due to various kinds of heterogeneities (soft tissue interfaces with bone, air, lung and metallic implants) for a range of clinically useful photon energies and field sizes. EGSnrc MC radiation transport code has been used for linear accelerator head modeling and phantom dose calculations. Dose perturbations were quantified in terms of forward- and backscatter factors as well as inside the heterogeneity of low densities for various field sizes including 5 × 5 cm2, 10 × 10 cm2 and 15 × 15 cm2. For lung heterogeneity, both under-dosage and over-dosage has been assessed in relation to the field sizes and energies. These simulations confirm under-dosage in the case of lung heterogeneity for small field sizes, which increases with the energy. However, lung tissues reflect an overdose with smaller energies and larger field sizes.