基于卡尔曼滤波的密集深度图动态更新

G. Attolico, A. Distante, T. D’orazio, E. Stella
{"title":"基于卡尔曼滤波的密集深度图动态更新","authors":"G. Attolico, A. Distante, T. D’orazio, E. Stella","doi":"10.1109/IROS.1991.174596","DOIUrl":null,"url":null,"abstract":"Recovering three-dimensional visible surfaces is an important cue in computer vision. Like most of the inverse problems it is hard to be solved due to the insufficient and inaccurate data that can be collected using passive sensors. Data fusion and integration over time can be used to overcome this problem. In this paper the depth and orientation are acquired from a scene and are used together to build a dense map of the visible surface for each of several points of view. An incremental estimator is used to integrate these maps, as soon as they become available, in a more reliable result.<<ETX>>","PeriodicalId":388962,"journal":{"name":"Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic update of dense depth map by Kalman filtering\",\"authors\":\"G. Attolico, A. Distante, T. D’orazio, E. Stella\",\"doi\":\"10.1109/IROS.1991.174596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recovering three-dimensional visible surfaces is an important cue in computer vision. Like most of the inverse problems it is hard to be solved due to the insufficient and inaccurate data that can be collected using passive sensors. Data fusion and integration over time can be used to overcome this problem. In this paper the depth and orientation are acquired from a scene and are used together to build a dense map of the visible surface for each of several points of view. An incremental estimator is used to integrate these maps, as soon as they become available, in a more reliable result.<<ETX>>\",\"PeriodicalId\":388962,\"journal\":{\"name\":\"Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.1991.174596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1991.174596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

三维可见曲面的恢复是计算机视觉中的一个重要线索。与大多数反问题一样,由于无源传感器收集的数据不足且不准确,因此难以解决。随着时间的推移,数据融合和集成可以用来克服这个问题。在本文中,深度和方向是从场景中获取的,并一起用于为每个视角构建可见表面的密集地图。增量估计器用于集成这些地图,一旦它们变得可用,就会得到更可靠的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic update of dense depth map by Kalman filtering
Recovering three-dimensional visible surfaces is an important cue in computer vision. Like most of the inverse problems it is hard to be solved due to the insufficient and inaccurate data that can be collected using passive sensors. Data fusion and integration over time can be used to overcome this problem. In this paper the depth and orientation are acquired from a scene and are used together to build a dense map of the visible surface for each of several points of view. An incremental estimator is used to integrate these maps, as soon as they become available, in a more reliable result.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信