Jeyavijayan Rajendran, Youngok Pino, O. Sinanoglu, R. Karri
{"title":"逻辑混淆的安全分析","authors":"Jeyavijayan Rajendran, Youngok Pino, O. Sinanoglu, R. Karri","doi":"10.1145/2228360.2228377","DOIUrl":null,"url":null,"abstract":"Due to globalization of Integrated Circuit (IC) design flow, rogue elements in the supply chain can pirate ICs, overbuild ICs, and insert hardware trojans. EPIC [1] obfuscates the design by randomly inserting additional gates; only a correct key makes the design to produce correct outputs. We demonstrate that an attacker can decipher the obfuscated nctlist, in a time linear to the number of keys, by sensitizing the key values to the output. We then develop techniques to fix this vulnerability and make obfuscation truly exponential in the number of inserted keys.","PeriodicalId":263599,"journal":{"name":"DAC Design Automation Conference 2012","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"412","resultStr":"{\"title\":\"Security analysis of logic obfuscation\",\"authors\":\"Jeyavijayan Rajendran, Youngok Pino, O. Sinanoglu, R. Karri\",\"doi\":\"10.1145/2228360.2228377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to globalization of Integrated Circuit (IC) design flow, rogue elements in the supply chain can pirate ICs, overbuild ICs, and insert hardware trojans. EPIC [1] obfuscates the design by randomly inserting additional gates; only a correct key makes the design to produce correct outputs. We demonstrate that an attacker can decipher the obfuscated nctlist, in a time linear to the number of keys, by sensitizing the key values to the output. We then develop techniques to fix this vulnerability and make obfuscation truly exponential in the number of inserted keys.\",\"PeriodicalId\":263599,\"journal\":{\"name\":\"DAC Design Automation Conference 2012\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"412\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DAC Design Automation Conference 2012\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2228360.2228377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAC Design Automation Conference 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2228360.2228377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Due to globalization of Integrated Circuit (IC) design flow, rogue elements in the supply chain can pirate ICs, overbuild ICs, and insert hardware trojans. EPIC [1] obfuscates the design by randomly inserting additional gates; only a correct key makes the design to produce correct outputs. We demonstrate that an attacker can decipher the obfuscated nctlist, in a time linear to the number of keys, by sensitizing the key values to the output. We then develop techniques to fix this vulnerability and make obfuscation truly exponential in the number of inserted keys.