Ganghun Kim, N. Nagarajan, E. Pastuzyn, Kyle R Jenks, M. Capecchi, J. Shepherd, R. Menon
{"title":"计算机套管显微镜:通过超薄玻璃针进行荧光成像","authors":"Ganghun Kim, N. Nagarajan, E. Pastuzyn, Kyle R Jenks, M. Capecchi, J. Shepherd, R. Menon","doi":"10.1364/ISA.2017.ITH1E.2","DOIUrl":null,"url":null,"abstract":"We demonstrate a fluorescent microscopy through an optical cannula (220µm diameter glass needle) for deep tissue imaging. We first show sample images captured in thin sections for the proof of principle. Then cannula is inserted deep into dissected brain tissue which captured high resolution images of microglia cells.","PeriodicalId":263258,"journal":{"name":"Rundbrief Der Gi-fachgruppe 5.10 Informationssystem-architekturen","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Cannula Microscopy: Fluorescent imaging through ultra-thin glass needle\",\"authors\":\"Ganghun Kim, N. Nagarajan, E. Pastuzyn, Kyle R Jenks, M. Capecchi, J. Shepherd, R. Menon\",\"doi\":\"10.1364/ISA.2017.ITH1E.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate a fluorescent microscopy through an optical cannula (220µm diameter glass needle) for deep tissue imaging. We first show sample images captured in thin sections for the proof of principle. Then cannula is inserted deep into dissected brain tissue which captured high resolution images of microglia cells.\",\"PeriodicalId\":263258,\"journal\":{\"name\":\"Rundbrief Der Gi-fachgruppe 5.10 Informationssystem-architekturen\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rundbrief Der Gi-fachgruppe 5.10 Informationssystem-architekturen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/ISA.2017.ITH1E.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rundbrief Der Gi-fachgruppe 5.10 Informationssystem-architekturen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/ISA.2017.ITH1E.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational Cannula Microscopy: Fluorescent imaging through ultra-thin glass needle
We demonstrate a fluorescent microscopy through an optical cannula (220µm diameter glass needle) for deep tissue imaging. We first show sample images captured in thin sections for the proof of principle. Then cannula is inserted deep into dissected brain tissue which captured high resolution images of microglia cells.