自排序FFT方法消除了繁琐的乘法运算,适合嵌入式DSP处理器

Marwan A. Jaber, D. Massicotte
{"title":"自排序FFT方法消除了繁琐的乘法运算,适合嵌入式DSP处理器","authors":"Marwan A. Jaber, D. Massicotte","doi":"10.1109/NEWCAS.2012.6328954","DOIUrl":null,"url":null,"abstract":"The Discrete Fourier Transform (DFT) is a mathematical procedure at the core of processing inside a Digital Signal Processor. Speed and low complexity are crucial in the FFT process; they can be achieved by avoiding trivial multiplications through a proper handling of the input/output data and the twiddle factors. Accordingly, this paper presents an innovative approach for handling the input/output data efficiently by avoiding trivial multiplications. This approach consists of a simple mapping of the three indices (FFT stage, butterfly and element) to the addresses of the input/output data with their corresponding coefficient multiplier. A self-sorting algorithm that reduces the amount of memory accesses to the coefficient multipliers' memory can also reduce the computational load by avoiding all trivial multiplications. Compared with the most-recent work [5], performance evaluation in terms of the number of cycles on the general-purpose TMS320C6416 DSP shows a reduction of 29% (FFT of size 4096) and a 50% memory reduction to stock twiddle factors. The algorithm has also shown a speed gain of 24% on the FFTW platform for a FFT of size 4096.","PeriodicalId":122918,"journal":{"name":"10th IEEE International NEWCAS Conference","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Self-sorting FFT method eliminating trivial multiplication and suitable for embedded DSP processor\",\"authors\":\"Marwan A. Jaber, D. Massicotte\",\"doi\":\"10.1109/NEWCAS.2012.6328954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Discrete Fourier Transform (DFT) is a mathematical procedure at the core of processing inside a Digital Signal Processor. Speed and low complexity are crucial in the FFT process; they can be achieved by avoiding trivial multiplications through a proper handling of the input/output data and the twiddle factors. Accordingly, this paper presents an innovative approach for handling the input/output data efficiently by avoiding trivial multiplications. This approach consists of a simple mapping of the three indices (FFT stage, butterfly and element) to the addresses of the input/output data with their corresponding coefficient multiplier. A self-sorting algorithm that reduces the amount of memory accesses to the coefficient multipliers' memory can also reduce the computational load by avoiding all trivial multiplications. Compared with the most-recent work [5], performance evaluation in terms of the number of cycles on the general-purpose TMS320C6416 DSP shows a reduction of 29% (FFT of size 4096) and a 50% memory reduction to stock twiddle factors. The algorithm has also shown a speed gain of 24% on the FFTW platform for a FFT of size 4096.\",\"PeriodicalId\":122918,\"journal\":{\"name\":\"10th IEEE International NEWCAS Conference\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th IEEE International NEWCAS Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS.2012.6328954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th IEEE International NEWCAS Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2012.6328954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

离散傅里叶变换(DFT)是数字信号处理器内部处理的核心数学过程。快速和低复杂度在FFT过程中是至关重要的;可以通过正确处理输入/输出数据和中间因子来避免琐碎的乘法来实现。因此,本文提出了一种创新的方法,通过避免琐碎的乘法来有效地处理输入/输出数据。这种方法包括三个索引(FFT阶段、蝴蝶和元素)到输入/输出数据的地址的简单映射,以及相应的系数乘数。减少对系数乘法器内存的内存访问量的自排序算法还可以通过避免所有琐碎的乘法来减少计算负载。与最近的工作[5]相比,在通用TMS320C6416 DSP上进行的周期数性能评估显示,由于库存抖动因素,减少了29% (FFT大小为4096)和50%的内存减少。对于大小为4096的FFT,该算法在FFTW平台上的速度增益为24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-sorting FFT method eliminating trivial multiplication and suitable for embedded DSP processor
The Discrete Fourier Transform (DFT) is a mathematical procedure at the core of processing inside a Digital Signal Processor. Speed and low complexity are crucial in the FFT process; they can be achieved by avoiding trivial multiplications through a proper handling of the input/output data and the twiddle factors. Accordingly, this paper presents an innovative approach for handling the input/output data efficiently by avoiding trivial multiplications. This approach consists of a simple mapping of the three indices (FFT stage, butterfly and element) to the addresses of the input/output data with their corresponding coefficient multiplier. A self-sorting algorithm that reduces the amount of memory accesses to the coefficient multipliers' memory can also reduce the computational load by avoiding all trivial multiplications. Compared with the most-recent work [5], performance evaluation in terms of the number of cycles on the general-purpose TMS320C6416 DSP shows a reduction of 29% (FFT of size 4096) and a 50% memory reduction to stock twiddle factors. The algorithm has also shown a speed gain of 24% on the FFTW platform for a FFT of size 4096.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信