半导体生产调度的深度强化学习

Bernd Waschneck, André Reichstaller, Lenz Belzner, Thomas Altenmüller, T. Bauernhansl, Alexander Knapp, A. Kyek
{"title":"半导体生产调度的深度强化学习","authors":"Bernd Waschneck, André Reichstaller, Lenz Belzner, Thomas Altenmüller, T. Bauernhansl, Alexander Knapp, A. Kyek","doi":"10.1109/ASMC.2018.8373191","DOIUrl":null,"url":null,"abstract":"Despite producing tremendous success stories by identifying cat videos [1] or solving computer as well as board games [2], [3], the adoption of deep learning in the semiconductor industry is moderatre. In this paper, we apply Google DeepMind's Deep Q Network (DQN) agent algorithm for Reinforcement Learning (RL) to semiconductor production scheduling. In an RL environment several cooperative DQN agents, which utilize deep neural networks, are trained with flexible user-defined objectives. We show benchmarks comparing standard dispatching heuristics with the DQN agents in an abstract frontend-of-line semiconduc­tor production facility. Results are promising and show that DQN agents optimize production autonomously for different targets.","PeriodicalId":349004,"journal":{"name":"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Deep reinforcement learning for semiconductor production scheduling\",\"authors\":\"Bernd Waschneck, André Reichstaller, Lenz Belzner, Thomas Altenmüller, T. Bauernhansl, Alexander Knapp, A. Kyek\",\"doi\":\"10.1109/ASMC.2018.8373191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite producing tremendous success stories by identifying cat videos [1] or solving computer as well as board games [2], [3], the adoption of deep learning in the semiconductor industry is moderatre. In this paper, we apply Google DeepMind's Deep Q Network (DQN) agent algorithm for Reinforcement Learning (RL) to semiconductor production scheduling. In an RL environment several cooperative DQN agents, which utilize deep neural networks, are trained with flexible user-defined objectives. We show benchmarks comparing standard dispatching heuristics with the DQN agents in an abstract frontend-of-line semiconduc­tor production facility. Results are promising and show that DQN agents optimize production autonomously for different targets.\",\"PeriodicalId\":349004,\"journal\":{\"name\":\"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMC.2018.8373191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC.2018.8373191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

尽管通过识别猫视频[1]或解决计算机和棋盘游戏[2],[3]产生了巨大的成功故事,但半导体行业对深度学习的采用是温和的。在本文中,我们将Google DeepMind的Deep Q Network (DQN)用于强化学习(RL)的代理算法应用于半导体生产调度。在RL环境中,几个利用深度神经网络的协作DQN代理使用灵活的用户定义目标进行训练。我们展示了在一个抽象的前端半导体生产设施中比较标准调度启发式与DQN代理的基准测试。结果表明,DQN代理可以针对不同的目标自主优化生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep reinforcement learning for semiconductor production scheduling
Despite producing tremendous success stories by identifying cat videos [1] or solving computer as well as board games [2], [3], the adoption of deep learning in the semiconductor industry is moderatre. In this paper, we apply Google DeepMind's Deep Q Network (DQN) agent algorithm for Reinforcement Learning (RL) to semiconductor production scheduling. In an RL environment several cooperative DQN agents, which utilize deep neural networks, are trained with flexible user-defined objectives. We show benchmarks comparing standard dispatching heuristics with the DQN agents in an abstract frontend-of-line semiconduc­tor production facility. Results are promising and show that DQN agents optimize production autonomously for different targets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信