采用亚纳米EOT的高栅极介质Ga2O3(Gd2O3)实现高性能Ge MOS器件

L. Chu, R. Chu, C. A. Lin, T. Lin, T. Chiang, J. Kwo, M. Hong
{"title":"采用亚纳米EOT的高栅极介质Ga2O3(Gd2O3)实现高性能Ge MOS器件","authors":"L. Chu, R. Chu, C. A. Lin, T. Lin, T. Chiang, J. Kwo, M. Hong","doi":"10.1109/DRC.2010.5551961","DOIUrl":null,"url":null,"abstract":"When channel materials other than Si are being considered to enhance the carrier mobility, Ge has always been one viable candidate since it possesses higher carrier mobility than those of Si. However, it is difficult to achieve a high-quality oxide/Ge interface comparable to SiO<inf>2</inf>/Si due to unfavorable surface properties and water-soluble native oxides of Ge. Over the past 4–5 years, two major techniques have been shown to effectively passivate the Ge surface by utilizing Si(SiO<inf>2</inf>) [1] and thermally grown stoichiometric GeO<inf>2</inf> [2,3] as the passivation layers, thus giving low D<inf>it</inf>'s of ∼10<sup>11</sup> cm<sup>−2</sup>eV<sup>−1</sup>. However, the use of the interfacial passivation layers (IPL) encountered a major hindrance primarily due to their relatively lower к values which have an adverse effect on the critical requirement of great reduction of equivalent oxide thickness (EOT) for future CMOS applications. An effective approach to achieve the ultimate EOT down-scaling is to directly deposit high-к dielectrics on Ge without IPLs, while maintaining a high к value and decent oxide/Ge interface quality.","PeriodicalId":396875,"journal":{"name":"68th Device Research Conference","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Achieving high-performance Ge MOS devices using high-к gate dielectrics Ga2O3(Gd2O3) of sub-nm EOT\",\"authors\":\"L. Chu, R. Chu, C. A. Lin, T. Lin, T. Chiang, J. Kwo, M. Hong\",\"doi\":\"10.1109/DRC.2010.5551961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When channel materials other than Si are being considered to enhance the carrier mobility, Ge has always been one viable candidate since it possesses higher carrier mobility than those of Si. However, it is difficult to achieve a high-quality oxide/Ge interface comparable to SiO<inf>2</inf>/Si due to unfavorable surface properties and water-soluble native oxides of Ge. Over the past 4–5 years, two major techniques have been shown to effectively passivate the Ge surface by utilizing Si(SiO<inf>2</inf>) [1] and thermally grown stoichiometric GeO<inf>2</inf> [2,3] as the passivation layers, thus giving low D<inf>it</inf>'s of ∼10<sup>11</sup> cm<sup>−2</sup>eV<sup>−1</sup>. However, the use of the interfacial passivation layers (IPL) encountered a major hindrance primarily due to their relatively lower к values which have an adverse effect on the critical requirement of great reduction of equivalent oxide thickness (EOT) for future CMOS applications. An effective approach to achieve the ultimate EOT down-scaling is to directly deposit high-к dielectrics on Ge without IPLs, while maintaining a high к value and decent oxide/Ge interface quality.\",\"PeriodicalId\":396875,\"journal\":{\"name\":\"68th Device Research Conference\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"68th Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2010.5551961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"68th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2010.5551961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

当考虑除Si以外的通道材料来提高载流子迁移率时,Ge一直是一个可行的候选材料,因为它比Si具有更高的载流子迁移率。然而,由于Ge的表面性质和水溶性天然氧化物的不利,很难获得与SiO2/Si相当的高质量氧化物/Ge界面。在过去的4-5年里,已经有两种主要的技术被证明可以有效地钝化锗表面,即利用Si(SiO2)[1]和热生长的化学测量物GeO2[2,3]作为钝化层,从而获得低Dit,约为1011 cm−2eV−1。然而,界面钝化层(IPL)的使用遇到了主要障碍,主要是由于它们相对较低的值,这对未来CMOS应用中大幅降低等效氧化物厚度(EOT)的关键要求有不利影响。实现最终EOT缩减的有效方法是直接在Ge上沉积高介电体而不使用ipl,同时保持高的介电体值和良好的氧化物/Ge界面质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Achieving high-performance Ge MOS devices using high-к gate dielectrics Ga2O3(Gd2O3) of sub-nm EOT
When channel materials other than Si are being considered to enhance the carrier mobility, Ge has always been one viable candidate since it possesses higher carrier mobility than those of Si. However, it is difficult to achieve a high-quality oxide/Ge interface comparable to SiO2/Si due to unfavorable surface properties and water-soluble native oxides of Ge. Over the past 4–5 years, two major techniques have been shown to effectively passivate the Ge surface by utilizing Si(SiO2) [1] and thermally grown stoichiometric GeO2 [2,3] as the passivation layers, thus giving low Dit's of ∼1011 cm−2eV−1. However, the use of the interfacial passivation layers (IPL) encountered a major hindrance primarily due to their relatively lower к values which have an adverse effect on the critical requirement of great reduction of equivalent oxide thickness (EOT) for future CMOS applications. An effective approach to achieve the ultimate EOT down-scaling is to directly deposit high-к dielectrics on Ge without IPLs, while maintaining a high к value and decent oxide/Ge interface quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信