基于网格搜索的增强强度矢量球谐域多源定位

S. Hafezi, Alastair H. Moore, P. Naylor
{"title":"基于网格搜索的增强强度矢量球谐域多源定位","authors":"S. Hafezi, Alastair H. Moore, P. Naylor","doi":"10.1109/EUSIPCO.2016.7760319","DOIUrl":null,"url":null,"abstract":"Multiple source localization is an important task in acoustic signal processing with applications including dereverberation, source separation, source tracking and environment mapping. When using spherical microphone arrays, it has been previously shown that Pseudo-intensity Vectors (PIV), and Augmented Intensity Vectors (AIV), are an effective approach for direction of arrival estimation of a sound source. In this paper, we evaluate AIV-based localization in acoustic scenarios involving multiple sound sources. Simulations are conducted where the number of sources, their angular separation and the reverberation time of the room are varied. The results indicate that AIV outperforms PIV and Steered Response Power (SRP) with an average accuracy between 5 and 10 degrees for sources with angular separation of 30 degrees or more. AIV also shows better robustness to reverberation time than PIV and SRP.","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Multiple source localization in the spherical harmonic domain using augmented intensity vectors based on grid search\",\"authors\":\"S. Hafezi, Alastair H. Moore, P. Naylor\",\"doi\":\"10.1109/EUSIPCO.2016.7760319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple source localization is an important task in acoustic signal processing with applications including dereverberation, source separation, source tracking and environment mapping. When using spherical microphone arrays, it has been previously shown that Pseudo-intensity Vectors (PIV), and Augmented Intensity Vectors (AIV), are an effective approach for direction of arrival estimation of a sound source. In this paper, we evaluate AIV-based localization in acoustic scenarios involving multiple sound sources. Simulations are conducted where the number of sources, their angular separation and the reverberation time of the room are varied. The results indicate that AIV outperforms PIV and Steered Response Power (SRP) with an average accuracy between 5 and 10 degrees for sources with angular separation of 30 degrees or more. AIV also shows better robustness to reverberation time than PIV and SRP.\",\"PeriodicalId\":127068,\"journal\":{\"name\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUSIPCO.2016.7760319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

多声源定位是声信号处理中的一项重要任务,其应用包括去噪、声源分离、声源跟踪和环境映射等。在球形传声器阵列中,伪强度矢量(PIV)和增强强度矢量(AIV)是一种有效的声源到达方向估计方法。在本文中,我们评估了在涉及多个声源的声学场景中基于ai的定位。在不同声源数量、不同声源的角距和不同室内混响时间的情况下进行了仿真。结果表明,对于角分离大于等于30度的源,AIV的平均精度在5 ~ 10度之间,优于PIV和转向响应功率(SRP)。AIV对混响时间的鲁棒性也优于PIV和SRP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple source localization in the spherical harmonic domain using augmented intensity vectors based on grid search
Multiple source localization is an important task in acoustic signal processing with applications including dereverberation, source separation, source tracking and environment mapping. When using spherical microphone arrays, it has been previously shown that Pseudo-intensity Vectors (PIV), and Augmented Intensity Vectors (AIV), are an effective approach for direction of arrival estimation of a sound source. In this paper, we evaluate AIV-based localization in acoustic scenarios involving multiple sound sources. Simulations are conducted where the number of sources, their angular separation and the reverberation time of the room are varied. The results indicate that AIV outperforms PIV and Steered Response Power (SRP) with an average accuracy between 5 and 10 degrees for sources with angular separation of 30 degrees or more. AIV also shows better robustness to reverberation time than PIV and SRP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信