{"title":"表面声波诱导的微流控滴中的纳米颗粒图案","authors":"L. Yeo, J. Friend, Haiyan Li","doi":"10.1109/ULTSYM.2009.5441910","DOIUrl":null,"url":null,"abstract":"We demonstrate complex nonlinear pattern formation dynamics associated with standing wave vibrations induced along a piezoelectric substrate on which a small drop of colloidal suspension is placed. Interfacial colloidal islands which self-assemble due to surface acceleration and capillarity are subsequently erased once fluid streaming becomes significant at higher powers. Due to a peculiar instability, the system cycles between colloidal island assembly when streaming ceases and erasure when streaming resumes.","PeriodicalId":368182,"journal":{"name":"2009 IEEE International Ultrasonics Symposium","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nanoparticle patterning in a microfluidic drop induced by surface acoustic waves\",\"authors\":\"L. Yeo, J. Friend, Haiyan Li\",\"doi\":\"10.1109/ULTSYM.2009.5441910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate complex nonlinear pattern formation dynamics associated with standing wave vibrations induced along a piezoelectric substrate on which a small drop of colloidal suspension is placed. Interfacial colloidal islands which self-assemble due to surface acceleration and capillarity are subsequently erased once fluid streaming becomes significant at higher powers. Due to a peculiar instability, the system cycles between colloidal island assembly when streaming ceases and erasure when streaming resumes.\",\"PeriodicalId\":368182,\"journal\":{\"name\":\"2009 IEEE International Ultrasonics Symposium\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Ultrasonics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2009.5441910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Ultrasonics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2009.5441910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nanoparticle patterning in a microfluidic drop induced by surface acoustic waves
We demonstrate complex nonlinear pattern formation dynamics associated with standing wave vibrations induced along a piezoelectric substrate on which a small drop of colloidal suspension is placed. Interfacial colloidal islands which self-assemble due to surface acceleration and capillarity are subsequently erased once fluid streaming becomes significant at higher powers. Due to a peculiar instability, the system cycles between colloidal island assembly when streaming ceases and erasure when streaming resumes.