大块金属玻璃的超塑性纳米/微成形及其在微机械上的应用

Y. Saotome
{"title":"大块金属玻璃的超塑性纳米/微成形及其在微机械上的应用","authors":"Y. Saotome","doi":"10.1109/MHS.2003.1249878","DOIUrl":null,"url":null,"abstract":"Bulk metallic glasses as second-generation amorphous alloys exhibit Newtonian viscous flow under very low stresses in the supercooled liquid temperature range and furthermore, the materials exhibit superior micro/nano formability and good geometrical transferability of die. These alloys are therefore expected to become some of the most useful materials for fabricating nano-/micro-machines (MEMS) and devices. The present paper demonstrates the macroscopic and microscopic deformation behavior of La-, Zr-, Pd- and Pt-based bulk metallic glasses, as well as micromachine production methods for the materials. Nano/microforming techniques are shown as follows: microextrusion with microdies made of laser-micromachined polyimide and of Ni by UV-LIGA (lithography and electroforming) process, submicron imprinting with silicon die fabricated by EB lithography and etching, microforging of microgear of 10 /spl mu/m in module with Ni-microdie fabricated by UV-LIGA process, microforging of micro cantilever with laser-micromachined polyimide die. As a result, bulk metallic glasses are highly useful for realizing high-performance micro-actuators and microstructures due to their excellent characteristics as functional or structural materials, including isotropic homogeneity free from crystalline anisotropy on micrometer and nanometer scales.","PeriodicalId":358698,"journal":{"name":"MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superplastic nano/microforming of bulk metallic glasses and the application to micromachines\",\"authors\":\"Y. Saotome\",\"doi\":\"10.1109/MHS.2003.1249878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bulk metallic glasses as second-generation amorphous alloys exhibit Newtonian viscous flow under very low stresses in the supercooled liquid temperature range and furthermore, the materials exhibit superior micro/nano formability and good geometrical transferability of die. These alloys are therefore expected to become some of the most useful materials for fabricating nano-/micro-machines (MEMS) and devices. The present paper demonstrates the macroscopic and microscopic deformation behavior of La-, Zr-, Pd- and Pt-based bulk metallic glasses, as well as micromachine production methods for the materials. Nano/microforming techniques are shown as follows: microextrusion with microdies made of laser-micromachined polyimide and of Ni by UV-LIGA (lithography and electroforming) process, submicron imprinting with silicon die fabricated by EB lithography and etching, microforging of microgear of 10 /spl mu/m in module with Ni-microdie fabricated by UV-LIGA process, microforging of micro cantilever with laser-micromachined polyimide die. As a result, bulk metallic glasses are highly useful for realizing high-performance micro-actuators and microstructures due to their excellent characteristics as functional or structural materials, including isotropic homogeneity free from crystalline anisotropy on micrometer and nanometer scales.\",\"PeriodicalId\":358698,\"journal\":{\"name\":\"MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MHS.2003.1249878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MHS.2003.1249878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大块金属玻璃作为第二代非晶态合金,在过冷液体温度范围内具有牛顿粘性流动,具有优异的微纳成形性和良好的模具几何可转移性。因此,这些合金有望成为制造纳米/微机械(MEMS)和器件的一些最有用的材料。本文研究了La-、Zr-、Pd-和pt基大块金属玻璃的宏观和微观变形行为,以及这些材料的微机械生产方法。纳米/微成形技术包括:用激光微加工聚酰亚胺和镍微模具进行微挤压(UV-LIGA光刻+电铸)、用电子束光刻+蚀刻的硅模进行亚微米压印、用紫外- liga光刻+蚀刻的镍微模具进行10 /spl mu/m的微齿轮模的微锻造、用激光微加工聚酰亚胺模进行微悬臂的微锻造。因此,大块金属玻璃由于其作为功能或结构材料的优异特性,包括在微米和纳米尺度上不受晶体各向异性影响的各向同性,对实现高性能微致动器和微结构非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superplastic nano/microforming of bulk metallic glasses and the application to micromachines
Bulk metallic glasses as second-generation amorphous alloys exhibit Newtonian viscous flow under very low stresses in the supercooled liquid temperature range and furthermore, the materials exhibit superior micro/nano formability and good geometrical transferability of die. These alloys are therefore expected to become some of the most useful materials for fabricating nano-/micro-machines (MEMS) and devices. The present paper demonstrates the macroscopic and microscopic deformation behavior of La-, Zr-, Pd- and Pt-based bulk metallic glasses, as well as micromachine production methods for the materials. Nano/microforming techniques are shown as follows: microextrusion with microdies made of laser-micromachined polyimide and of Ni by UV-LIGA (lithography and electroforming) process, submicron imprinting with silicon die fabricated by EB lithography and etching, microforging of microgear of 10 /spl mu/m in module with Ni-microdie fabricated by UV-LIGA process, microforging of micro cantilever with laser-micromachined polyimide die. As a result, bulk metallic glasses are highly useful for realizing high-performance micro-actuators and microstructures due to their excellent characteristics as functional or structural materials, including isotropic homogeneity free from crystalline anisotropy on micrometer and nanometer scales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信