液体生物燃料在DLE工业燃气轮机中的应用进展

Priyanka Saxena, W. Steele, L. Cowell
{"title":"液体生物燃料在DLE工业燃气轮机中的应用进展","authors":"Priyanka Saxena, W. Steele, L. Cowell","doi":"10.1115/gt2021-58761","DOIUrl":null,"url":null,"abstract":"\n Decarbonization of electricity is paramount for the success of curbing growth of greenhouse gas emissions in the atmosphere. For many power generation applications there is a growing interest in using bio-fuels to replace fossils-based fuels, such as diesel and natural gas. Bio-fuels, being plant-based fuels, are classified as carbon neutral fuels. Several distributed power generation sites, such as universities, are interested in the feasibility of burning bio-fuels, such as biodiesel and alcohols, in stationary gas turbines to reduce their carbon-footprint as well as earn tax credits. In order to maintain its leadership in fuel-flexibility and to support its distributed power generation customers, Solar has qualified several of its gas turbine models using both the conventional and dry low emissions (DLE) combustion systems on various biodiesel blends. This paper presents results of the combustion rig tests with DLE combustion injectors using biodiesel blends and their comparison with those of No. 2 diesel and natural gas fuels. The emissions (NOx, CO, UHC) from B20 biodiesel blend were similar to that of ULSD, but higher than natural gas. The results are summarized in terms of gas turbines emissions and performance. Impacts of fuel properties on storage, handling and gas turbines operations are discussed. Finally, future development opportunities are also presented.","PeriodicalId":129194,"journal":{"name":"Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progress in Using Liquid Bio-Fuels in DLE Industrial Gas Turbines\",\"authors\":\"Priyanka Saxena, W. Steele, L. Cowell\",\"doi\":\"10.1115/gt2021-58761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Decarbonization of electricity is paramount for the success of curbing growth of greenhouse gas emissions in the atmosphere. For many power generation applications there is a growing interest in using bio-fuels to replace fossils-based fuels, such as diesel and natural gas. Bio-fuels, being plant-based fuels, are classified as carbon neutral fuels. Several distributed power generation sites, such as universities, are interested in the feasibility of burning bio-fuels, such as biodiesel and alcohols, in stationary gas turbines to reduce their carbon-footprint as well as earn tax credits. In order to maintain its leadership in fuel-flexibility and to support its distributed power generation customers, Solar has qualified several of its gas turbine models using both the conventional and dry low emissions (DLE) combustion systems on various biodiesel blends. This paper presents results of the combustion rig tests with DLE combustion injectors using biodiesel blends and their comparison with those of No. 2 diesel and natural gas fuels. The emissions (NOx, CO, UHC) from B20 biodiesel blend were similar to that of ULSD, but higher than natural gas. The results are summarized in terms of gas turbines emissions and performance. Impacts of fuel properties on storage, handling and gas turbines operations are discussed. Finally, future development opportunities are also presented.\",\"PeriodicalId\":129194,\"journal\":{\"name\":\"Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2021-58761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-58761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电力的脱碳对于成功遏制大气中温室气体排放的增长至关重要。对于许多发电应用来说,人们对使用生物燃料代替化石燃料(如柴油和天然气)的兴趣日益浓厚。生物燃料是植物性燃料,被归类为碳中性燃料。一些分布式发电场所,如大学,对在固定式燃气轮机中燃烧生物燃料(如生物柴油和酒精)的可行性感兴趣,以减少其碳足迹,并获得税收抵免。为了保持其在燃料灵活性方面的领先地位,并支持其分布式发电客户,Solar已经对几种使用传统和干式低排放(DLE)燃烧系统的各种生物柴油混合物的燃气轮机模型进行了认证。本文介绍了使用生物柴油混合燃料的DLE燃烧喷射器的燃烧试验结果,并与2号柴油和天然气燃料进行了比较。B20混合生物柴油的NOx、CO、UHC排放量与ULSD相似,但高于天然气。结果总结在燃气轮机排放和性能方面。讨论了燃料特性对储存、处理和燃气轮机运行的影响。最后,提出了未来的发展机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Progress in Using Liquid Bio-Fuels in DLE Industrial Gas Turbines
Decarbonization of electricity is paramount for the success of curbing growth of greenhouse gas emissions in the atmosphere. For many power generation applications there is a growing interest in using bio-fuels to replace fossils-based fuels, such as diesel and natural gas. Bio-fuels, being plant-based fuels, are classified as carbon neutral fuels. Several distributed power generation sites, such as universities, are interested in the feasibility of burning bio-fuels, such as biodiesel and alcohols, in stationary gas turbines to reduce their carbon-footprint as well as earn tax credits. In order to maintain its leadership in fuel-flexibility and to support its distributed power generation customers, Solar has qualified several of its gas turbine models using both the conventional and dry low emissions (DLE) combustion systems on various biodiesel blends. This paper presents results of the combustion rig tests with DLE combustion injectors using biodiesel blends and their comparison with those of No. 2 diesel and natural gas fuels. The emissions (NOx, CO, UHC) from B20 biodiesel blend were similar to that of ULSD, but higher than natural gas. The results are summarized in terms of gas turbines emissions and performance. Impacts of fuel properties on storage, handling and gas turbines operations are discussed. Finally, future development opportunities are also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信