选择聚焦和微力控制的微操作接触过渡控制

Ge Yang, B. Nelson
{"title":"选择聚焦和微力控制的微操作接触过渡控制","authors":"Ge Yang, B. Nelson","doi":"10.1109/ROBOT.2003.1242083","DOIUrl":null,"url":null,"abstract":"A fundamental requirement of micromanipulation is to control the impact force and subsequently the contact force in the transition of the micromanipulator end-effector from noncontact to contact state. This is especially important in protecting fragile microstructures and preventing undesirable motion. This paper proposes a method of using the integration of selective focusing and microforce control to achieve fast transition control while minimizing impact force. The method is applied to contact transition in microassembly pick-and-place operations. The initial long-range approach motion of the end-effector towards its target is controlled based on focus measures computed from images captured through a microscope. When the end-effector comes into focus near the target, the system switches to microforce control to minimize impact force and to regulate the contact force. An optics model for microscope focusing is proposed to characterize the dynamic behavior of the end-effector images during the approach motion. The connection between this model and the scale-space theory of computer vision is emphasized. Three different focus measures are tested and compared in performance. The proposed method has been experimentally verified to be able to achieve fast transition control with minimal impact force.","PeriodicalId":315346,"journal":{"name":"2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Micromanipulation contact transition control by selective focusing and microforce control\",\"authors\":\"Ge Yang, B. Nelson\",\"doi\":\"10.1109/ROBOT.2003.1242083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fundamental requirement of micromanipulation is to control the impact force and subsequently the contact force in the transition of the micromanipulator end-effector from noncontact to contact state. This is especially important in protecting fragile microstructures and preventing undesirable motion. This paper proposes a method of using the integration of selective focusing and microforce control to achieve fast transition control while minimizing impact force. The method is applied to contact transition in microassembly pick-and-place operations. The initial long-range approach motion of the end-effector towards its target is controlled based on focus measures computed from images captured through a microscope. When the end-effector comes into focus near the target, the system switches to microforce control to minimize impact force and to regulate the contact force. An optics model for microscope focusing is proposed to characterize the dynamic behavior of the end-effector images during the approach motion. The connection between this model and the scale-space theory of computer vision is emphasized. Three different focus measures are tested and compared in performance. The proposed method has been experimentally verified to be able to achieve fast transition control with minimal impact force.\",\"PeriodicalId\":315346,\"journal\":{\"name\":\"2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.2003.1242083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2003.1242083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

在微机械末端执行器由非接触状态过渡到接触状态的过程中,如何控制冲击力和接触力是微机械操作的一个基本要求。这在保护脆弱的微结构和防止不良运动方面尤为重要。本文提出了一种将选择聚焦和微力控制相结合的方法,以实现快速过渡控制,同时使冲击力最小化。将该方法应用于微装配拾取操作中的接触过渡问题。末端执行器对目标的初始远程接近运动是基于通过显微镜捕获的图像计算的焦点测量来控制的。当末端执行器在目标附近聚焦时,系统切换到微力控制,以减小冲击力并调节接触力。提出了一种显微镜聚焦的光学模型来描述末端执行器在接近运动过程中的动态行为。强调了该模型与计算机视觉的尺度空间理论之间的联系。测试和比较了三种不同的焦点测量方法的性能。实验证明,该方法能够以最小的冲击力实现快速过渡控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Micromanipulation contact transition control by selective focusing and microforce control
A fundamental requirement of micromanipulation is to control the impact force and subsequently the contact force in the transition of the micromanipulator end-effector from noncontact to contact state. This is especially important in protecting fragile microstructures and preventing undesirable motion. This paper proposes a method of using the integration of selective focusing and microforce control to achieve fast transition control while minimizing impact force. The method is applied to contact transition in microassembly pick-and-place operations. The initial long-range approach motion of the end-effector towards its target is controlled based on focus measures computed from images captured through a microscope. When the end-effector comes into focus near the target, the system switches to microforce control to minimize impact force and to regulate the contact force. An optics model for microscope focusing is proposed to characterize the dynamic behavior of the end-effector images during the approach motion. The connection between this model and the scale-space theory of computer vision is emphasized. Three different focus measures are tested and compared in performance. The proposed method has been experimentally verified to be able to achieve fast transition control with minimal impact force.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信