基于不确定性边界违反的转子断条故障检测方案的实验评价

M. Mustafa, G. Nikolakopoulos, T. Gustafsson
{"title":"基于不确定性边界违反的转子断条故障检测方案的实验评价","authors":"M. Mustafa, G. Nikolakopoulos, T. Gustafsson","doi":"10.1109/IECON.2013.6700041","DOIUrl":null,"url":null,"abstract":"This paper proposed a new technique for an experimental evaluation of a broken rotor bar fault detection based on Uncertainty Bounds violation. The novelty of this article stems from the establishment and the experimental evaluation of fault detection scheme being able to detect faults at the beginning of its occurrence, based on Set Membership Identification and novel proposed boundary violation rules for the identified motor's parameters. By the utilization of the SMI technique, the simplified equivalent model of the induction motor is being identified during the steady state operation (non-fault case), while at the same time safety bounds for the identified variables are being provided, based on an a priori defined corrupting additive noise. On the event of a fault, specific fault detection conditions are being proposed that can capture the fault of a broken bar. Detailed analysis of the proposed approach as also extended experimental results are being presented that prove the efficiency of the proposed scheme.","PeriodicalId":237327,"journal":{"name":"IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Experimental evaluation of a broken rotor bar fault detection scheme based on Uncertainty Bounds violation\",\"authors\":\"M. Mustafa, G. Nikolakopoulos, T. Gustafsson\",\"doi\":\"10.1109/IECON.2013.6700041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed a new technique for an experimental evaluation of a broken rotor bar fault detection based on Uncertainty Bounds violation. The novelty of this article stems from the establishment and the experimental evaluation of fault detection scheme being able to detect faults at the beginning of its occurrence, based on Set Membership Identification and novel proposed boundary violation rules for the identified motor's parameters. By the utilization of the SMI technique, the simplified equivalent model of the induction motor is being identified during the steady state operation (non-fault case), while at the same time safety bounds for the identified variables are being provided, based on an a priori defined corrupting additive noise. On the event of a fault, specific fault detection conditions are being proposed that can capture the fault of a broken bar. Detailed analysis of the proposed approach as also extended experimental results are being presented that prove the efficiency of the proposed scheme.\",\"PeriodicalId\":237327,\"journal\":{\"name\":\"IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.2013.6700041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2013.6700041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于不确定性边界违反的转子断条故障检测实验评估新方法。本文的新颖之处在于基于集合隶属度识别的故障检测方案的建立和实验评估,该方案能够在故障发生的初期就检测到故障,并提出了新的被识别电机参数的边界违例规则。利用SMI技术,识别了异步电动机在稳态运行(无故障情况下)的简化等效模型,同时基于先验定义的破坏性加性噪声,提供了识别变量的安全边界。在发生故障时,提出了特定的故障检测条件,可以捕获断条的故障。对所提出的方法进行了详细的分析,并给出了扩展实验结果,证明了所提出方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental evaluation of a broken rotor bar fault detection scheme based on Uncertainty Bounds violation
This paper proposed a new technique for an experimental evaluation of a broken rotor bar fault detection based on Uncertainty Bounds violation. The novelty of this article stems from the establishment and the experimental evaluation of fault detection scheme being able to detect faults at the beginning of its occurrence, based on Set Membership Identification and novel proposed boundary violation rules for the identified motor's parameters. By the utilization of the SMI technique, the simplified equivalent model of the induction motor is being identified during the steady state operation (non-fault case), while at the same time safety bounds for the identified variables are being provided, based on an a priori defined corrupting additive noise. On the event of a fault, specific fault detection conditions are being proposed that can capture the fault of a broken bar. Detailed analysis of the proposed approach as also extended experimental results are being presented that prove the efficiency of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信