{"title":"液压Stewart平台的建模、仿真与控制","authors":"D. Li, S. Salcudean","doi":"10.1109/ROBOT.1997.606801","DOIUrl":null,"url":null,"abstract":"This paper describes the modeling, simulation, and control of an inverted, ceiling-mounted Stewart platform, designed to be a one-person motion simulator. The dynamic equations of the Stewart platform are derived using the virtual work principle. It is shown by simulations that the leg dynamics can be neglected. A model of the electrohydraulic actuator is derived and then verified using experimental data. A linkspace pressure-feedback controller is proposed for high performance with good stability robustness. With the above controller, the small-motion position bandwidth of the platform can reach 9 Hz along the vertical axis for a payload of about 140 kg.","PeriodicalId":225473,"journal":{"name":"Proceedings of International Conference on Robotics and Automation","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":"{\"title\":\"Modeling, simulation, and control of a hydraulic Stewart platform\",\"authors\":\"D. Li, S. Salcudean\",\"doi\":\"10.1109/ROBOT.1997.606801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the modeling, simulation, and control of an inverted, ceiling-mounted Stewart platform, designed to be a one-person motion simulator. The dynamic equations of the Stewart platform are derived using the virtual work principle. It is shown by simulations that the leg dynamics can be neglected. A model of the electrohydraulic actuator is derived and then verified using experimental data. A linkspace pressure-feedback controller is proposed for high performance with good stability robustness. With the above controller, the small-motion position bandwidth of the platform can reach 9 Hz along the vertical axis for a payload of about 140 kg.\",\"PeriodicalId\":225473,\"journal\":{\"name\":\"Proceedings of International Conference on Robotics and Automation\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.1997.606801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1997.606801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling, simulation, and control of a hydraulic Stewart platform
This paper describes the modeling, simulation, and control of an inverted, ceiling-mounted Stewart platform, designed to be a one-person motion simulator. The dynamic equations of the Stewart platform are derived using the virtual work principle. It is shown by simulations that the leg dynamics can be neglected. A model of the electrohydraulic actuator is derived and then verified using experimental data. A linkspace pressure-feedback controller is proposed for high performance with good stability robustness. With the above controller, the small-motion position bandwidth of the platform can reach 9 Hz along the vertical axis for a payload of about 140 kg.