{"title":"电力感知无线文件下载:一个受约束的不安宁的强盗方法","authors":"Xiaohan Wei, M. Neely","doi":"10.1109/WIOPT.2014.6850336","DOIUrl":null,"url":null,"abstract":"This paper treats power-aware throughput maximization in a multi-user file downloading system. Each user can receive a new file only after its previous file is finished. The file state processes for each user act as coupled Markov chains that form a generalized restless bandit system. First, an optimal algorithm is derived for the case of one user. The algorithm maximizes throughput subject to an average power constraint. Next, the one-user algorithm is extended to a low complexity heuristic for the multi-user problem. The heuristic uses a simple online index policy and its effectiveness is shown via simulation. For simple 3-user cases where the optimal solution can be computed offline, the heuristic is shown to be near-optimal for a wide range of parameters.","PeriodicalId":381489,"journal":{"name":"2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Power aware wireless file downloading: A constrained restless bandit approach\",\"authors\":\"Xiaohan Wei, M. Neely\",\"doi\":\"10.1109/WIOPT.2014.6850336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper treats power-aware throughput maximization in a multi-user file downloading system. Each user can receive a new file only after its previous file is finished. The file state processes for each user act as coupled Markov chains that form a generalized restless bandit system. First, an optimal algorithm is derived for the case of one user. The algorithm maximizes throughput subject to an average power constraint. Next, the one-user algorithm is extended to a low complexity heuristic for the multi-user problem. The heuristic uses a simple online index policy and its effectiveness is shown via simulation. For simple 3-user cases where the optimal solution can be computed offline, the heuristic is shown to be near-optimal for a wide range of parameters.\",\"PeriodicalId\":381489,\"journal\":{\"name\":\"2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIOPT.2014.6850336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIOPT.2014.6850336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power aware wireless file downloading: A constrained restless bandit approach
This paper treats power-aware throughput maximization in a multi-user file downloading system. Each user can receive a new file only after its previous file is finished. The file state processes for each user act as coupled Markov chains that form a generalized restless bandit system. First, an optimal algorithm is derived for the case of one user. The algorithm maximizes throughput subject to an average power constraint. Next, the one-user algorithm is extended to a low complexity heuristic for the multi-user problem. The heuristic uses a simple online index policy and its effectiveness is shown via simulation. For simple 3-user cases where the optimal solution can be computed offline, the heuristic is shown to be near-optimal for a wide range of parameters.