R. Akhmetvaleev, I. Lakman, D. V. Popov, Zagidullin N.Sh
{"title":"基于分类的数据可视化支持的采样策略","authors":"R. Akhmetvaleev, I. Lakman, D. V. Popov, Zagidullin N.Sh","doi":"10.1109/FarEastCon.2019.8933887","DOIUrl":null,"url":null,"abstract":"The objective of this research is to select an optimal set of sampling algorithms for bi class and multi class classification problem solving on the example of the problem of the myocardium infarction localization based on retrospective electrocardiographic data.","PeriodicalId":395247,"journal":{"name":"2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sampling Strategies for Classification-Based Data Visualization Support\",\"authors\":\"R. Akhmetvaleev, I. Lakman, D. V. Popov, Zagidullin N.Sh\",\"doi\":\"10.1109/FarEastCon.2019.8933887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this research is to select an optimal set of sampling algorithms for bi class and multi class classification problem solving on the example of the problem of the myocardium infarction localization based on retrospective electrocardiographic data.\",\"PeriodicalId\":395247,\"journal\":{\"name\":\"2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FarEastCon.2019.8933887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FarEastCon.2019.8933887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sampling Strategies for Classification-Based Data Visualization Support
The objective of this research is to select an optimal set of sampling algorithms for bi class and multi class classification problem solving on the example of the problem of the myocardium infarction localization based on retrospective electrocardiographic data.