{"title":"基于RGB数据的无标记深度学习移动机器人6自由度姿态估计","authors":"Linh Kästner, D. Dimitrov, Jens Lambrecht","doi":"10.1109/UR49135.2020.9144789","DOIUrl":null,"url":null,"abstract":"Augmented Reality has been subject to various integration efforts within industries due to its ability to enhance human machine interaction and understanding. Neural networks have achieved remarkable results in areas of computer vision, which bear great potential to assist and facilitate an enhanced Augmented Reality experience. However, most neural networks are computationally intensive and demand huge processing power, thus are not suitable for deployment on Augmented Reality devices. In this work, we propose a method to deploy state of the art neural networks for real time 3D object localization on augmented reality devices. As a result, we provide a more automated method of calibrating the AR devices with mobile robotic systems. To accelerate the calibration process and enhance user experience, we focus on fast 2D detection approaches which are extracting the 3D pose of the object fast and accurately by using only 2D input. The results are implemented into an Augmented Reality application for intuitive robot control and sensor data visualization. For the 6D annotation of 2D images, we developed an annotation tool, which is, to our knowledge, the first open source tool to be available. We achieve feasible results which are generally applicable to any AR device, thus making this work promising for further research in combining high demanding neural networks with Internet of Things devices.","PeriodicalId":360208,"journal":{"name":"2020 17th International Conference on Ubiquitous Robots (UR)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Markerless Deep Learning-based 6 Degrees of Freedom Pose Estimation for Mobile Robots using RGB Data\",\"authors\":\"Linh Kästner, D. Dimitrov, Jens Lambrecht\",\"doi\":\"10.1109/UR49135.2020.9144789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Augmented Reality has been subject to various integration efforts within industries due to its ability to enhance human machine interaction and understanding. Neural networks have achieved remarkable results in areas of computer vision, which bear great potential to assist and facilitate an enhanced Augmented Reality experience. However, most neural networks are computationally intensive and demand huge processing power, thus are not suitable for deployment on Augmented Reality devices. In this work, we propose a method to deploy state of the art neural networks for real time 3D object localization on augmented reality devices. As a result, we provide a more automated method of calibrating the AR devices with mobile robotic systems. To accelerate the calibration process and enhance user experience, we focus on fast 2D detection approaches which are extracting the 3D pose of the object fast and accurately by using only 2D input. The results are implemented into an Augmented Reality application for intuitive robot control and sensor data visualization. For the 6D annotation of 2D images, we developed an annotation tool, which is, to our knowledge, the first open source tool to be available. We achieve feasible results which are generally applicable to any AR device, thus making this work promising for further research in combining high demanding neural networks with Internet of Things devices.\",\"PeriodicalId\":360208,\"journal\":{\"name\":\"2020 17th International Conference on Ubiquitous Robots (UR)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 17th International Conference on Ubiquitous Robots (UR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UR49135.2020.9144789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UR49135.2020.9144789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Markerless Deep Learning-based 6 Degrees of Freedom Pose Estimation for Mobile Robots using RGB Data
Augmented Reality has been subject to various integration efforts within industries due to its ability to enhance human machine interaction and understanding. Neural networks have achieved remarkable results in areas of computer vision, which bear great potential to assist and facilitate an enhanced Augmented Reality experience. However, most neural networks are computationally intensive and demand huge processing power, thus are not suitable for deployment on Augmented Reality devices. In this work, we propose a method to deploy state of the art neural networks for real time 3D object localization on augmented reality devices. As a result, we provide a more automated method of calibrating the AR devices with mobile robotic systems. To accelerate the calibration process and enhance user experience, we focus on fast 2D detection approaches which are extracting the 3D pose of the object fast and accurately by using only 2D input. The results are implemented into an Augmented Reality application for intuitive robot control and sensor data visualization. For the 6D annotation of 2D images, we developed an annotation tool, which is, to our knowledge, the first open source tool to be available. We achieve feasible results which are generally applicable to any AR device, thus making this work promising for further research in combining high demanding neural networks with Internet of Things devices.