扩展浮动车数据的路面分类

D. Irschik, W. Stork
{"title":"扩展浮动车数据的路面分类","authors":"D. Irschik, W. Stork","doi":"10.1109/ICVES.2014.7063728","DOIUrl":null,"url":null,"abstract":"An ongoing trend to connect vehicles for advanced driver assistance and driver information can be observed in the automotive industry. Whereas the channel into the car has been used for years for example by Traffic Message Compact (TMC), functions using the channel out of the car are just evolving. This paper presents a new functionality for extended floating car data (XFCD) where vehicles are used as mobile measurement probes for traffic information. It is demonstrated how vehicle data can be used to identify hazards related to the road surface. The presented algorithm classifies the current road condition using standard vehicle sensor data. The information fusion focuses on weather related events affecting the traffic safety and achieves a very good detection rate. Based on such estimations hazardous spots in the traffic network can be detected. The incar estimation of the hazard potential is presented in the context of a two-step traffic hazard recognition system. A second-level fusion combining several vehicle reports as well as additional data is performed in a central back-end server which also coordinates the provision of the valuable information to other road users as local hazard warning.","PeriodicalId":248904,"journal":{"name":"2014 IEEE International Conference on Vehicular Electronics and Safety","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Road surface classification for extended floating car data\",\"authors\":\"D. Irschik, W. Stork\",\"doi\":\"10.1109/ICVES.2014.7063728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ongoing trend to connect vehicles for advanced driver assistance and driver information can be observed in the automotive industry. Whereas the channel into the car has been used for years for example by Traffic Message Compact (TMC), functions using the channel out of the car are just evolving. This paper presents a new functionality for extended floating car data (XFCD) where vehicles are used as mobile measurement probes for traffic information. It is demonstrated how vehicle data can be used to identify hazards related to the road surface. The presented algorithm classifies the current road condition using standard vehicle sensor data. The information fusion focuses on weather related events affecting the traffic safety and achieves a very good detection rate. Based on such estimations hazardous spots in the traffic network can be detected. The incar estimation of the hazard potential is presented in the context of a two-step traffic hazard recognition system. A second-level fusion combining several vehicle reports as well as additional data is performed in a central back-end server which also coordinates the provision of the valuable information to other road users as local hazard warning.\",\"PeriodicalId\":248904,\"journal\":{\"name\":\"2014 IEEE International Conference on Vehicular Electronics and Safety\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Vehicular Electronics and Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVES.2014.7063728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Vehicular Electronics and Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVES.2014.7063728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在汽车行业,可以观察到一种持续的趋势,即连接车辆以获得高级驾驶员辅助和驾驶员信息。虽然车内通道(例如交通信息联盟(TMC))已经使用多年,但使用车外通道的功能才刚刚发展。本文提出了一种扩展浮动汽车数据(XFCD)的新功能,其中车辆被用作交通信息的移动测量探测器。演示了如何使用车辆数据来识别与路面有关的危险。该算法利用标准车辆传感器数据对当前路况进行分类。信息融合主要针对影响交通安全的天气相关事件,实现了很好的检测率。基于这样的估计,可以检测到交通网络中的危险点。在两步交通危险识别系统的背景下,提出了危险潜力的小车估计。在中央后端服务器上进行第二级融合,结合多个车辆报告和其他数据,该服务器还协调向其他道路使用者提供有价值的信息,作为当地危险警告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Road surface classification for extended floating car data
An ongoing trend to connect vehicles for advanced driver assistance and driver information can be observed in the automotive industry. Whereas the channel into the car has been used for years for example by Traffic Message Compact (TMC), functions using the channel out of the car are just evolving. This paper presents a new functionality for extended floating car data (XFCD) where vehicles are used as mobile measurement probes for traffic information. It is demonstrated how vehicle data can be used to identify hazards related to the road surface. The presented algorithm classifies the current road condition using standard vehicle sensor data. The information fusion focuses on weather related events affecting the traffic safety and achieves a very good detection rate. Based on such estimations hazardous spots in the traffic network can be detected. The incar estimation of the hazard potential is presented in the context of a two-step traffic hazard recognition system. A second-level fusion combining several vehicle reports as well as additional data is performed in a central back-end server which also coordinates the provision of the valuable information to other road users as local hazard warning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信