Tolga Bakirman, G. Bilgin, F. B. Sanli, E. Uslu, Mustafa Ustuner
{"title":"合成孔径雷达与多光谱卫星数据的融合与分类","authors":"Tolga Bakirman, G. Bilgin, F. B. Sanli, E. Uslu, Mustafa Ustuner","doi":"10.1109/SIU.2014.6830339","DOIUrl":null,"url":null,"abstract":"In this study, synthetic aperture radar (SAR) and multispectral data are fused with different methods in order to observe the effect of fusion methods on the accuracy of different classification techniques. At the same time, different polarizations of SAR data are included in fusion process and results are examined. The fusion methods that are used in this study are Brovey Color Normalized, Hue Saturation Value (HSV), Gram - Schmidt (GS) Spectral Sharpening and Principal Components (PC) Spectral Sharpening. Fused images are classified using k-nearest neighbor, support vector machine and radial based function neural network. The study area is chosen on Menemen Plain, which contains agricultural lands, and it is located in İzmir. Multispectral RapidEye satellite image and TerraSAR-X radar data are used for the analysis. Achieved results were presented in the tables. The highest accuracy is achieved by K-NN classification of TerraSAR-X and VH fusion with GS method as 95.74%.","PeriodicalId":384835,"journal":{"name":"2014 22nd Signal Processing and Communications Applications Conference (SIU)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fusion and classification of synthetic aparture radar and multispectral sattellite data\",\"authors\":\"Tolga Bakirman, G. Bilgin, F. B. Sanli, E. Uslu, Mustafa Ustuner\",\"doi\":\"10.1109/SIU.2014.6830339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, synthetic aperture radar (SAR) and multispectral data are fused with different methods in order to observe the effect of fusion methods on the accuracy of different classification techniques. At the same time, different polarizations of SAR data are included in fusion process and results are examined. The fusion methods that are used in this study are Brovey Color Normalized, Hue Saturation Value (HSV), Gram - Schmidt (GS) Spectral Sharpening and Principal Components (PC) Spectral Sharpening. Fused images are classified using k-nearest neighbor, support vector machine and radial based function neural network. The study area is chosen on Menemen Plain, which contains agricultural lands, and it is located in İzmir. Multispectral RapidEye satellite image and TerraSAR-X radar data are used for the analysis. Achieved results were presented in the tables. The highest accuracy is achieved by K-NN classification of TerraSAR-X and VH fusion with GS method as 95.74%.\",\"PeriodicalId\":384835,\"journal\":{\"name\":\"2014 22nd Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2014.6830339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2014.6830339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fusion and classification of synthetic aparture radar and multispectral sattellite data
In this study, synthetic aperture radar (SAR) and multispectral data are fused with different methods in order to observe the effect of fusion methods on the accuracy of different classification techniques. At the same time, different polarizations of SAR data are included in fusion process and results are examined. The fusion methods that are used in this study are Brovey Color Normalized, Hue Saturation Value (HSV), Gram - Schmidt (GS) Spectral Sharpening and Principal Components (PC) Spectral Sharpening. Fused images are classified using k-nearest neighbor, support vector machine and radial based function neural network. The study area is chosen on Menemen Plain, which contains agricultural lands, and it is located in İzmir. Multispectral RapidEye satellite image and TerraSAR-X radar data are used for the analysis. Achieved results were presented in the tables. The highest accuracy is achieved by K-NN classification of TerraSAR-X and VH fusion with GS method as 95.74%.