自旋字符分解矩阵,S24模,p=7

49 Pub Date : 2023-06-30 DOI:10.56714/bjrs.49.1.7
Ahmed H. Jassim, Saeed A. Taban
{"title":"自旋字符分解矩阵,S24模,p=7","authors":"Ahmed H. Jassim, Saeed A. Taban","doi":"10.56714/bjrs.49.1.7","DOIUrl":null,"url":null,"abstract":"In this work, we compute decomposition matrix for the spin characters , connected between irreducible spin characters and irreducible modular spin characters, when the field characteristic equal to 7. The method used in this work is -inducing in a way to generate projective character for by projective character of and used maple program to see all the possible of columns and then choose the possible the right columns of them. The aim of this research is to pave the way for finding general relationships and theorems to study irreducible modular spin characters.","PeriodicalId":127734,"journal":{"name":"49","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin Characters' Decomposition Matrix, S24 modulo, p=7\",\"authors\":\"Ahmed H. Jassim, Saeed A. Taban\",\"doi\":\"10.56714/bjrs.49.1.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we compute decomposition matrix for the spin characters , connected between irreducible spin characters and irreducible modular spin characters, when the field characteristic equal to 7. The method used in this work is -inducing in a way to generate projective character for by projective character of and used maple program to see all the possible of columns and then choose the possible the right columns of them. The aim of this research is to pave the way for finding general relationships and theorems to study irreducible modular spin characters.\",\"PeriodicalId\":127734,\"journal\":{\"name\":\"49\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"49\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56714/bjrs.49.1.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"49","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56714/bjrs.49.1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在此工作中,我们计算了在场特征等于7时,连接不可约自旋字符和不可约模自旋字符的分解矩阵。本工作采用的方法是用一种由射影特征生成射影特征的方法,并使用maple程序来查看所有可能的列,然后从中选择可能的正确列。本研究的目的是为寻找研究不可约模自旋性质的一般关系和定理铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spin Characters' Decomposition Matrix, S24 modulo, p=7
In this work, we compute decomposition matrix for the spin characters , connected between irreducible spin characters and irreducible modular spin characters, when the field characteristic equal to 7. The method used in this work is -inducing in a way to generate projective character for by projective character of and used maple program to see all the possible of columns and then choose the possible the right columns of them. The aim of this research is to pave the way for finding general relationships and theorems to study irreducible modular spin characters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
49
49
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信