如何为协作质量建立更通用的模型?从使用多模式学习分析探索多上下文音频日志数据集的经验教训

Pankaj Chejara, L. Prieto, M. Rodríguez-Triana, Reet Kasepalu, Adolfo Ruiz-Calleja, Shashi Kant Shankar
{"title":"如何为协作质量建立更通用的模型?从使用多模式学习分析探索多上下文音频日志数据集的经验教训","authors":"Pankaj Chejara, L. Prieto, M. Rodríguez-Triana, Reet Kasepalu, Adolfo Ruiz-Calleja, Shashi Kant Shankar","doi":"10.1145/3576050.3576144","DOIUrl":null,"url":null,"abstract":"Multimodal learning analytics (MMLA) research for building collaboration quality estimation models has shown significant progress. However, the generalizability of such models is seldom addressed. In this paper, we address this gap by systematically evaluating the across-context generalizability of collaboration quality models developed using a typical MMLA pipeline. This paper further presents a methodology to explore modelling pipelines with different configurations to improve the generalizability of the model. We collected 11 multimodal datasets (audio and log data) from face-to-face collaborative learning activities in six different classrooms with five different subject teachers. Our results showed that the models developed using the often-employed MMLA pipeline degraded in terms of Kappa from Fair (.20 < Kappa < .40) to Poor (Kappa < .20) when evaluated across contexts. This degradation in performance was significantly ameliorated with pipelines that emerged as high-performing from our exploration of 32 pipelines. Furthermore, our exploration of pipelines provided statistical evidence that often-overlooked contextual data features improve the generalizability of a collaboration quality model. With these findings, we make recommendations for the modelling pipeline which can potentially help other researchers in achieving better generalizability in their collaboration quality estimation models.","PeriodicalId":394433,"journal":{"name":"LAK23: 13th International Learning Analytics and Knowledge Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"How to Build More Generalizable Models for Collaboration Quality? Lessons Learned from Exploring Multi-Context Audio-Log Datasets using Multimodal Learning Analytics\",\"authors\":\"Pankaj Chejara, L. Prieto, M. Rodríguez-Triana, Reet Kasepalu, Adolfo Ruiz-Calleja, Shashi Kant Shankar\",\"doi\":\"10.1145/3576050.3576144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimodal learning analytics (MMLA) research for building collaboration quality estimation models has shown significant progress. However, the generalizability of such models is seldom addressed. In this paper, we address this gap by systematically evaluating the across-context generalizability of collaboration quality models developed using a typical MMLA pipeline. This paper further presents a methodology to explore modelling pipelines with different configurations to improve the generalizability of the model. We collected 11 multimodal datasets (audio and log data) from face-to-face collaborative learning activities in six different classrooms with five different subject teachers. Our results showed that the models developed using the often-employed MMLA pipeline degraded in terms of Kappa from Fair (.20 < Kappa < .40) to Poor (Kappa < .20) when evaluated across contexts. This degradation in performance was significantly ameliorated with pipelines that emerged as high-performing from our exploration of 32 pipelines. Furthermore, our exploration of pipelines provided statistical evidence that often-overlooked contextual data features improve the generalizability of a collaboration quality model. With these findings, we make recommendations for the modelling pipeline which can potentially help other researchers in achieving better generalizability in their collaboration quality estimation models.\",\"PeriodicalId\":394433,\"journal\":{\"name\":\"LAK23: 13th International Learning Analytics and Knowledge Conference\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LAK23: 13th International Learning Analytics and Knowledge Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3576050.3576144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LAK23: 13th International Learning Analytics and Knowledge Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3576050.3576144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

建立协作质量评估模型的多模态学习分析(MMLA)研究取得了重大进展。然而,这些模型的泛化性很少得到解决。在本文中,我们通过系统地评估使用典型MMLA管道开发的协作质量模型的跨上下文泛化性来解决这一差距。本文进一步提出了一种方法来探索不同配置的管道建模,以提高模型的泛化性。我们收集了11个多模态数据集(音频和日志数据),这些数据来自6个不同教室的5个不同学科教师的面对面协作学习活动。我们的研究结果表明,使用常用的MMLA管道开发的模型在Kappa方面从Fair()下降。20 < Kappa < .40)到差(Kappa < .20)。在我们对32条管道的探索中,这种性能的下降得到了显著改善。此外,我们对管道的探索提供了统计证据,证明经常被忽视的上下文数据特征提高了协作质量模型的通用性。根据这些发现,我们对建模管道提出了建议,这可能有助于其他研究人员在他们的协作质量评估模型中实现更好的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to Build More Generalizable Models for Collaboration Quality? Lessons Learned from Exploring Multi-Context Audio-Log Datasets using Multimodal Learning Analytics
Multimodal learning analytics (MMLA) research for building collaboration quality estimation models has shown significant progress. However, the generalizability of such models is seldom addressed. In this paper, we address this gap by systematically evaluating the across-context generalizability of collaboration quality models developed using a typical MMLA pipeline. This paper further presents a methodology to explore modelling pipelines with different configurations to improve the generalizability of the model. We collected 11 multimodal datasets (audio and log data) from face-to-face collaborative learning activities in six different classrooms with five different subject teachers. Our results showed that the models developed using the often-employed MMLA pipeline degraded in terms of Kappa from Fair (.20 < Kappa < .40) to Poor (Kappa < .20) when evaluated across contexts. This degradation in performance was significantly ameliorated with pipelines that emerged as high-performing from our exploration of 32 pipelines. Furthermore, our exploration of pipelines provided statistical evidence that often-overlooked contextual data features improve the generalizability of a collaboration quality model. With these findings, we make recommendations for the modelling pipeline which can potentially help other researchers in achieving better generalizability in their collaboration quality estimation models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信