试着理解schrödinger图片中的禁闭

D. Diakonov
{"title":"试着理解schrödinger图片中的禁闭","authors":"D. Diakonov","doi":"10.1080/01422419908228838","DOIUrl":null,"url":null,"abstract":"Abstract We study the gauge-invariant gaussian ansatz for the vacuum wave functional and show that itpotentially posseses many desirable features of the Yang-Mills theory, like asymptotic freedom, mass generation through the transmutation of dimensions and a linear potential between static quarks. We point out that these (and other) features can be studied in a systematic way by combining perturbative and 1/n expansions. Contrary to the euclidean approach, confinement can be easilyformulated and easily built in, if not derived, in the variational Schrodinger approach.","PeriodicalId":264948,"journal":{"name":"Surveys in High Energy Physics","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Trying to understand confinement in the schrödinger picture\",\"authors\":\"D. Diakonov\",\"doi\":\"10.1080/01422419908228838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the gauge-invariant gaussian ansatz for the vacuum wave functional and show that itpotentially posseses many desirable features of the Yang-Mills theory, like asymptotic freedom, mass generation through the transmutation of dimensions and a linear potential between static quarks. We point out that these (and other) features can be studied in a systematic way by combining perturbative and 1/n expansions. Contrary to the euclidean approach, confinement can be easilyformulated and easily built in, if not derived, in the variational Schrodinger approach.\",\"PeriodicalId\":264948,\"journal\":{\"name\":\"Surveys in High Energy Physics\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surveys in High Energy Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01422419908228838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surveys in High Energy Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01422419908228838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

摘要研究了真空波泛函的规范不变高斯方差,证明了它潜在地具有杨-米尔斯理论的许多理想特征,如渐近自由、通过维数嬗变产生质量和静态夸克之间的线性势。我们指出这些(和其他)特征可以通过结合微扰展开和1/n展开以系统的方式研究。与欧几里得方法相反,在变分薛定谔方法中,约束可以很容易地表述和构建,如果不能推导出来的话。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trying to understand confinement in the schrödinger picture
Abstract We study the gauge-invariant gaussian ansatz for the vacuum wave functional and show that itpotentially posseses many desirable features of the Yang-Mills theory, like asymptotic freedom, mass generation through the transmutation of dimensions and a linear potential between static quarks. We point out that these (and other) features can be studied in a systematic way by combining perturbative and 1/n expansions. Contrary to the euclidean approach, confinement can be easilyformulated and easily built in, if not derived, in the variational Schrodinger approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信