手势识别与毫米波Wi-Fi接入点:经验教训

Nabeel Nisar Bhat, Rafael Berkvens, J. Famaey
{"title":"手势识别与毫米波Wi-Fi接入点:经验教训","authors":"Nabeel Nisar Bhat, Rafael Berkvens, J. Famaey","doi":"10.1109/WoWMoM57956.2023.00027","DOIUrl":null,"url":null,"abstract":"In recent years, channel state information (CSI) at sub-6 GHz has been widely exploited for Wi-Fi sensing, particularly for activity and gesture recognition. In this work, we instead explore mmWave (60 GHz) Wi-Fi signals for gesture recognition/pose estimation. Our focus is on the mmWave Wi-Fi signals so that they can be used not only for high data rate communication but also for improved sensing e.g., for extended reality (XR) applications. For this reason, we extract spatial beam signal-to-noise ratios (SNRs) from the periodic beam training employed by IEEE 802.11ad devices. We consider a set of 10 gestures/poses motivated by XR applications. We conduct experiments in two environments and with three people. As a comparison, we also collect CSI from IEEE 802.11ac devices. To extract features from the CSI and the beam SNR, we leverage a deep neural network (DNN). The DNN classifier achieves promising results on the beam SNR task with state-of-the-art 96.7% accuracy in a single environment, even with a limited dataset. We also investigate the robustness of the beam SNR against CSI across different environments. Our experiments reveal that features from the CSI generalize without additional re-training, while those from beam SNRs do not. Therefore, retraining is required in the latter case.","PeriodicalId":132845,"journal":{"name":"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gesture Recognition with mmWave Wi-Fi Access Points: Lessons Learned\",\"authors\":\"Nabeel Nisar Bhat, Rafael Berkvens, J. Famaey\",\"doi\":\"10.1109/WoWMoM57956.2023.00027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, channel state information (CSI) at sub-6 GHz has been widely exploited for Wi-Fi sensing, particularly for activity and gesture recognition. In this work, we instead explore mmWave (60 GHz) Wi-Fi signals for gesture recognition/pose estimation. Our focus is on the mmWave Wi-Fi signals so that they can be used not only for high data rate communication but also for improved sensing e.g., for extended reality (XR) applications. For this reason, we extract spatial beam signal-to-noise ratios (SNRs) from the periodic beam training employed by IEEE 802.11ad devices. We consider a set of 10 gestures/poses motivated by XR applications. We conduct experiments in two environments and with three people. As a comparison, we also collect CSI from IEEE 802.11ac devices. To extract features from the CSI and the beam SNR, we leverage a deep neural network (DNN). The DNN classifier achieves promising results on the beam SNR task with state-of-the-art 96.7% accuracy in a single environment, even with a limited dataset. We also investigate the robustness of the beam SNR against CSI across different environments. Our experiments reveal that features from the CSI generalize without additional re-training, while those from beam SNRs do not. Therefore, retraining is required in the latter case.\",\"PeriodicalId\":132845,\"journal\":{\"name\":\"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WoWMoM57956.2023.00027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoWMoM57956.2023.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,6ghz以下的信道状态信息(CSI)已被广泛用于Wi-Fi传感,特别是在活动和手势识别方面。在这项工作中,我们转而探索毫米波(60 GHz) Wi-Fi信号用于手势识别/姿势估计。我们的重点是毫米波Wi-Fi信号,这样它们不仅可以用于高数据速率通信,还可以用于改进的传感,例如扩展现实(XR)应用。因此,我们从IEEE 802.11ad设备采用的周期性波束训练中提取空间波束信噪比(SNRs)。我们考虑了一组由XR应用程序驱动的10个手势/姿势。我们在两种环境下和三个人一起进行实验。作为比较,我们还收集了IEEE 802.11ac设备的CSI。为了从CSI和波束信噪比中提取特征,我们利用了深度神经网络(DNN)。即使在有限的数据集下,DNN分类器在单一环境下也以最先进的96.7%的准确率在波束信噪比任务上取得了很好的结果。我们还研究了波束信噪比在不同环境下对CSI的鲁棒性。我们的实验表明,来自CSI的特征无需额外的再训练即可泛化,而来自波束信噪比的特征则不需要。因此,在后一种情况下需要再培训。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gesture Recognition with mmWave Wi-Fi Access Points: Lessons Learned
In recent years, channel state information (CSI) at sub-6 GHz has been widely exploited for Wi-Fi sensing, particularly for activity and gesture recognition. In this work, we instead explore mmWave (60 GHz) Wi-Fi signals for gesture recognition/pose estimation. Our focus is on the mmWave Wi-Fi signals so that they can be used not only for high data rate communication but also for improved sensing e.g., for extended reality (XR) applications. For this reason, we extract spatial beam signal-to-noise ratios (SNRs) from the periodic beam training employed by IEEE 802.11ad devices. We consider a set of 10 gestures/poses motivated by XR applications. We conduct experiments in two environments and with three people. As a comparison, we also collect CSI from IEEE 802.11ac devices. To extract features from the CSI and the beam SNR, we leverage a deep neural network (DNN). The DNN classifier achieves promising results on the beam SNR task with state-of-the-art 96.7% accuracy in a single environment, even with a limited dataset. We also investigate the robustness of the beam SNR against CSI across different environments. Our experiments reveal that features from the CSI generalize without additional re-training, while those from beam SNRs do not. Therefore, retraining is required in the latter case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信