A. Rupert, Drip, J. C. Brill, B. McGrath, Bruce J. P. Mortimer
{"title":"多感官线索解决直升机漂移检测在DVE","authors":"A. Rupert, Drip, J. C. Brill, B. McGrath, Bruce J. P. Mortimer","doi":"10.4050/f-0076-2020-16416","DOIUrl":null,"url":null,"abstract":"\n Spatial Disorientation (SD) mishaps account for the greatest loss of lives in both military and civilian aviation worldwide. When no mechanical cause of a mishap is identified, mishap investigators can use flight data recorder information to populate perceptual models with aircraft flight parameters in order to confirm or deny that pilot SD was the probable cause of the mishap. Current perceptual model weaknesses include the inability to analyze hover and hover-transition mishaps and not accounting for sensory inputs from the auditory and somatosensory systems. The authors have conducted in-flight helicopter perceptual threshold studies to extend the model envelop to include hover as well as a series of tactile cueing in-flight studies in fixed-wing aircraft to permit the inclusion of somatosensory information into the model. This expanded model, by including all sensory modalities, now provides a probable solution to prevention of SD mishaps by continuously maintaining spatial orientation via multisensory cueing. Examples of application of the model to recent high-profile mishaps are included. \n","PeriodicalId":293921,"journal":{"name":"Proceedings of the Vertical Flight Society 76th Annual Forum","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multisensory Cueing to Resolve Helicopter Drift Detection in DVE\",\"authors\":\"A. Rupert, Drip, J. C. Brill, B. McGrath, Bruce J. P. Mortimer\",\"doi\":\"10.4050/f-0076-2020-16416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Spatial Disorientation (SD) mishaps account for the greatest loss of lives in both military and civilian aviation worldwide. When no mechanical cause of a mishap is identified, mishap investigators can use flight data recorder information to populate perceptual models with aircraft flight parameters in order to confirm or deny that pilot SD was the probable cause of the mishap. Current perceptual model weaknesses include the inability to analyze hover and hover-transition mishaps and not accounting for sensory inputs from the auditory and somatosensory systems. The authors have conducted in-flight helicopter perceptual threshold studies to extend the model envelop to include hover as well as a series of tactile cueing in-flight studies in fixed-wing aircraft to permit the inclusion of somatosensory information into the model. This expanded model, by including all sensory modalities, now provides a probable solution to prevention of SD mishaps by continuously maintaining spatial orientation via multisensory cueing. Examples of application of the model to recent high-profile mishaps are included. \\n\",\"PeriodicalId\":293921,\"journal\":{\"name\":\"Proceedings of the Vertical Flight Society 76th Annual Forum\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Vertical Flight Society 76th Annual Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4050/f-0076-2020-16416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vertical Flight Society 76th Annual Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4050/f-0076-2020-16416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multisensory Cueing to Resolve Helicopter Drift Detection in DVE
Spatial Disorientation (SD) mishaps account for the greatest loss of lives in both military and civilian aviation worldwide. When no mechanical cause of a mishap is identified, mishap investigators can use flight data recorder information to populate perceptual models with aircraft flight parameters in order to confirm or deny that pilot SD was the probable cause of the mishap. Current perceptual model weaknesses include the inability to analyze hover and hover-transition mishaps and not accounting for sensory inputs from the auditory and somatosensory systems. The authors have conducted in-flight helicopter perceptual threshold studies to extend the model envelop to include hover as well as a series of tactile cueing in-flight studies in fixed-wing aircraft to permit the inclusion of somatosensory information into the model. This expanded model, by including all sensory modalities, now provides a probable solution to prevention of SD mishaps by continuously maintaining spatial orientation via multisensory cueing. Examples of application of the model to recent high-profile mishaps are included.