基于决策树的高效混合入侵检测系统HIDS-DT

Jie Yang, Xin Chen, Xudong Xiang, Jianxiong Wan
{"title":"基于决策树的高效混合入侵检测系统HIDS-DT","authors":"Jie Yang, Xin Chen, Xudong Xiang, Jianxiong Wan","doi":"10.1109/CMC.2010.73","DOIUrl":null,"url":null,"abstract":"A hybrid intrusion detection approach combing both misuse detection and anomaly detection can detect newly discovered attacks while maintaining a relatively high detection rate. This paper presents a novel hybrid intrusion detection system based on protocol analysis and decision tree algorithms. Performance evaluation of the proposed system is conducted using Generalized Stochastic Petri Nets (GSPN). Simulation results show that this hybrid system can reach a high detection rate.","PeriodicalId":296445,"journal":{"name":"2010 International Conference on Communications and Mobile Computing","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"HIDS-DT: An Effective Hybrid Intrusion Detection System Based on Decision Tree\",\"authors\":\"Jie Yang, Xin Chen, Xudong Xiang, Jianxiong Wan\",\"doi\":\"10.1109/CMC.2010.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hybrid intrusion detection approach combing both misuse detection and anomaly detection can detect newly discovered attacks while maintaining a relatively high detection rate. This paper presents a novel hybrid intrusion detection system based on protocol analysis and decision tree algorithms. Performance evaluation of the proposed system is conducted using Generalized Stochastic Petri Nets (GSPN). Simulation results show that this hybrid system can reach a high detection rate.\",\"PeriodicalId\":296445,\"journal\":{\"name\":\"2010 International Conference on Communications and Mobile Computing\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Communications and Mobile Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CMC.2010.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Communications and Mobile Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMC.2010.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

将误用检测和异常检测相结合的混合入侵检测方法可以在检测新发现的攻击的同时保持较高的检测率。提出了一种基于协议分析和决策树算法的混合入侵检测系统。采用广义随机Petri网(GSPN)对系统进行性能评价。仿真结果表明,该混合系统可以达到较高的检测率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HIDS-DT: An Effective Hybrid Intrusion Detection System Based on Decision Tree
A hybrid intrusion detection approach combing both misuse detection and anomaly detection can detect newly discovered attacks while maintaining a relatively high detection rate. This paper presents a novel hybrid intrusion detection system based on protocol analysis and decision tree algorithms. Performance evaluation of the proposed system is conducted using Generalized Stochastic Petri Nets (GSPN). Simulation results show that this hybrid system can reach a high detection rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信