机械臂非线性预测控制

P. Tatjewski
{"title":"机械臂非线性预测控制","authors":"P. Tatjewski","doi":"10.14313/par_248/47","DOIUrl":null,"url":null,"abstract":"The subject of the article are predictive control algorithms (of MPC type – Model Predictive Control) for rigid manipulator arms. MPC with a state-space model and with the latest disturbance and modeling error suppression technique was applied, which avoids dynamic disturbance modeling or resorting to additional disturbance cancellation techniques, such as SMC. First of all, the most computationally efficient MPC-NPL (Nonlinear Prediction and Linearization) algorithms are considered, in two versions: the first with constrained QP (Quadratic Programming) optimization and the second with explicit (analytical) optimization without constraints and satisfying a posteriori inequality constraints. For all considered algorithms, a comprehensive simulation analysis was carried out for a direct drive manipulator, with two kinds of disturbances: external and parametric. The obtained results were compared with those for the well-known CTC-PID algorithm (CTC – Computer Torque Control), showing better control quality with MPC algorithms. In addition, the influence of the length of the sampling period and of the computational delay on control quality was investigated, which is important for model-based algorithms with fast sampling.","PeriodicalId":383231,"journal":{"name":"Pomiary Automatyka Robotyka","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Predictive Control of Manipulator Arms\",\"authors\":\"P. Tatjewski\",\"doi\":\"10.14313/par_248/47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The subject of the article are predictive control algorithms (of MPC type – Model Predictive Control) for rigid manipulator arms. MPC with a state-space model and with the latest disturbance and modeling error suppression technique was applied, which avoids dynamic disturbance modeling or resorting to additional disturbance cancellation techniques, such as SMC. First of all, the most computationally efficient MPC-NPL (Nonlinear Prediction and Linearization) algorithms are considered, in two versions: the first with constrained QP (Quadratic Programming) optimization and the second with explicit (analytical) optimization without constraints and satisfying a posteriori inequality constraints. For all considered algorithms, a comprehensive simulation analysis was carried out for a direct drive manipulator, with two kinds of disturbances: external and parametric. The obtained results were compared with those for the well-known CTC-PID algorithm (CTC – Computer Torque Control), showing better control quality with MPC algorithms. In addition, the influence of the length of the sampling period and of the computational delay on control quality was investigated, which is important for model-based algorithms with fast sampling.\",\"PeriodicalId\":383231,\"journal\":{\"name\":\"Pomiary Automatyka Robotyka\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pomiary Automatyka Robotyka\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14313/par_248/47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pomiary Automatyka Robotyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14313/par_248/47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的主题是刚性机械臂的预测控制算法(MPC型-模型预测控制)。MPC采用了一种状态空间模型,并结合了最新的干扰和建模误差抑制技术,避免了动态干扰建模或求助于额外的干扰消除技术,如SMC。首先,考虑了计算效率最高的MPC-NPL(非线性预测和线性化)算法,分为两个版本:第一个是有约束的QP(二次规划)优化,第二个是没有约束和满足后验不等式约束的显式(解析)优化。对于所有考虑的算法,对直接驱动机械臂进行了全面的仿真分析,包括两种干扰:外部干扰和参数干扰。将得到的结果与CTC- pid算法(CTC - Computer Torque Control)的结果进行了比较,表明MPC算法具有更好的控制质量。此外,研究了采样周期长度和计算延迟对控制质量的影响,这对快速采样的基于模型的算法具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear Predictive Control of Manipulator Arms
The subject of the article are predictive control algorithms (of MPC type – Model Predictive Control) for rigid manipulator arms. MPC with a state-space model and with the latest disturbance and modeling error suppression technique was applied, which avoids dynamic disturbance modeling or resorting to additional disturbance cancellation techniques, such as SMC. First of all, the most computationally efficient MPC-NPL (Nonlinear Prediction and Linearization) algorithms are considered, in two versions: the first with constrained QP (Quadratic Programming) optimization and the second with explicit (analytical) optimization without constraints and satisfying a posteriori inequality constraints. For all considered algorithms, a comprehensive simulation analysis was carried out for a direct drive manipulator, with two kinds of disturbances: external and parametric. The obtained results were compared with those for the well-known CTC-PID algorithm (CTC – Computer Torque Control), showing better control quality with MPC algorithms. In addition, the influence of the length of the sampling period and of the computational delay on control quality was investigated, which is important for model-based algorithms with fast sampling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信