眩晕审问文本文本表示对分类结果的影响研究

Yingjian Yang, Shulei Zhang, Yingwei Guo, Qiang Li, Jiaqi Guo, Xiuli Zhang, Liang Lei, Yang Liu, Wei Li, Yan Kang
{"title":"眩晕审问文本文本表示对分类结果的影响研究","authors":"Yingjian Yang, Shulei Zhang, Yingwei Guo, Qiang Li, Jiaqi Guo, Xiuli Zhang, Liang Lei, Yang Liu, Wei Li, Yan Kang","doi":"10.1109/ISCTT51595.2020.00061","DOIUrl":null,"url":null,"abstract":"To understand the influence of the text representation of vertigo interrogation texts on classification results, our paper proposes a fusion strategy of text representation combination and constructs a new stacking model fusion. Vertigo interrogation texts of the four typical vertigo diseases are used to make classification under the different text representation. Results show that the classification effect of proposed stacking model fusion with proposed text representation combinations is superior to that of the gradient boosting decision tree, support vector machine, and naïve Bayes with the simple text representation. Results also show that the proposed text representation combination of word2vec, GloVe and one-hot is the best overall classification effect among other text representation combinations based on our proposed stacking model fusion. Therefore, we conclude that the proposed fusion strategy of text representation combination and stacking model fusion can improve the classification effect of text representation of vertigo interrogation texts.","PeriodicalId":178054,"journal":{"name":"2020 5th International Conference on Information Science, Computer Technology and Transportation (ISCTT)","volume":"161 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Influence of Text Representation of Vertigo Interrogation Texts on Classification Results\",\"authors\":\"Yingjian Yang, Shulei Zhang, Yingwei Guo, Qiang Li, Jiaqi Guo, Xiuli Zhang, Liang Lei, Yang Liu, Wei Li, Yan Kang\",\"doi\":\"10.1109/ISCTT51595.2020.00061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To understand the influence of the text representation of vertigo interrogation texts on classification results, our paper proposes a fusion strategy of text representation combination and constructs a new stacking model fusion. Vertigo interrogation texts of the four typical vertigo diseases are used to make classification under the different text representation. Results show that the classification effect of proposed stacking model fusion with proposed text representation combinations is superior to that of the gradient boosting decision tree, support vector machine, and naïve Bayes with the simple text representation. Results also show that the proposed text representation combination of word2vec, GloVe and one-hot is the best overall classification effect among other text representation combinations based on our proposed stacking model fusion. Therefore, we conclude that the proposed fusion strategy of text representation combination and stacking model fusion can improve the classification effect of text representation of vertigo interrogation texts.\",\"PeriodicalId\":178054,\"journal\":{\"name\":\"2020 5th International Conference on Information Science, Computer Technology and Transportation (ISCTT)\",\"volume\":\"161 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Information Science, Computer Technology and Transportation (ISCTT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCTT51595.2020.00061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Information Science, Computer Technology and Transportation (ISCTT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCTT51595.2020.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了了解眩晕审问文本的文本表示对分类结果的影响,本文提出了一种文本表示组合的融合策略,并构建了一种新的堆叠融合模型。利用四种典型眩晕病的眩晕问询文本在不同的文本表示下进行分类。结果表明,本文提出的叠加模型与本文提出的文本表示组合相融合的分类效果优于梯度增强决策树、支持向量机和naïve贝叶斯与简单文本表示相融合的分类效果。结果还表明,基于本文提出的叠加模型融合的文本表示组合中,word2vec、GloVe和one-hot是整体分类效果最好的文本表示组合。因此,我们得出结论,本文提出的文本表示组合和堆叠模型融合的融合策略可以提高眩晕问话文本表示的分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Influence of Text Representation of Vertigo Interrogation Texts on Classification Results
To understand the influence of the text representation of vertigo interrogation texts on classification results, our paper proposes a fusion strategy of text representation combination and constructs a new stacking model fusion. Vertigo interrogation texts of the four typical vertigo diseases are used to make classification under the different text representation. Results show that the classification effect of proposed stacking model fusion with proposed text representation combinations is superior to that of the gradient boosting decision tree, support vector machine, and naïve Bayes with the simple text representation. Results also show that the proposed text representation combination of word2vec, GloVe and one-hot is the best overall classification effect among other text representation combinations based on our proposed stacking model fusion. Therefore, we conclude that the proposed fusion strategy of text representation combination and stacking model fusion can improve the classification effect of text representation of vertigo interrogation texts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信