径向基函数神经网络在一类生化过程变结构控制中的应用

M. Efe, O. Kaynak, B. Wilamowski, Xinghuo Yu
{"title":"径向基函数神经网络在一类生化过程变结构控制中的应用","authors":"M. Efe, O. Kaynak, B. Wilamowski, Xinghuo Yu","doi":"10.1109/IECON.2001.976445","DOIUrl":null,"url":null,"abstract":"Biochemical processes often display a complicated dynamic behavior, the detailed understanding of which frequently constitutes a barrier between the theoretical foundations and practical implementations. One way of handling the complexity is to use intelligent approaches in the design of controllers. The paper presents an analytic approach to design controllers based on radial basis function neural networks (RBFNN) with particular emphasis on the extraction of the error measure to be used in parameter tuning. The simulation studies stipulate that the control system exhibits a highly robust behavior against disturbances and sharp changes in the command signal. The most important contribution of the paper is that the method presented does not require the analytical details describing the plant dynamics available.","PeriodicalId":345608,"journal":{"name":"IECON'01. 27th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.37243)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Radial basis function neural networks in variable structure control of a class of biochemical processes\",\"authors\":\"M. Efe, O. Kaynak, B. Wilamowski, Xinghuo Yu\",\"doi\":\"10.1109/IECON.2001.976445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biochemical processes often display a complicated dynamic behavior, the detailed understanding of which frequently constitutes a barrier between the theoretical foundations and practical implementations. One way of handling the complexity is to use intelligent approaches in the design of controllers. The paper presents an analytic approach to design controllers based on radial basis function neural networks (RBFNN) with particular emphasis on the extraction of the error measure to be used in parameter tuning. The simulation studies stipulate that the control system exhibits a highly robust behavior against disturbances and sharp changes in the command signal. The most important contribution of the paper is that the method presented does not require the analytical details describing the plant dynamics available.\",\"PeriodicalId\":345608,\"journal\":{\"name\":\"IECON'01. 27th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.37243)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON'01. 27th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.37243)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.2001.976445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON'01. 27th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.37243)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2001.976445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

生物化学过程往往表现出复杂的动态行为,对其详细的了解往往构成理论基础和实际实施之间的障碍。处理这种复杂性的一种方法是在控制器的设计中使用智能方法。本文提出了一种基于径向基函数神经网络(RBFNN)的控制器解析设计方法,重点研究了用于参数整定的误差度量的提取。仿真研究表明,该控制系统对干扰和指令信号的急剧变化具有很高的鲁棒性。本文最重要的贡献是所提出的方法不需要描述植物动力学的分析细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radial basis function neural networks in variable structure control of a class of biochemical processes
Biochemical processes often display a complicated dynamic behavior, the detailed understanding of which frequently constitutes a barrier between the theoretical foundations and practical implementations. One way of handling the complexity is to use intelligent approaches in the design of controllers. The paper presents an analytic approach to design controllers based on radial basis function neural networks (RBFNN) with particular emphasis on the extraction of the error measure to be used in parameter tuning. The simulation studies stipulate that the control system exhibits a highly robust behavior against disturbances and sharp changes in the command signal. The most important contribution of the paper is that the method presented does not require the analytical details describing the plant dynamics available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信