周期为2pn / GF(q)序列的k误差线性复杂度算法

Jianqin Zhou, Xirong Xu
{"title":"周期为2pn / GF(q)序列的k误差线性复杂度算法","authors":"Jianqin Zhou, Xirong Xu","doi":"10.1109/IWSDA.2007.4408335","DOIUrl":null,"url":null,"abstract":"We first optimize the structure of the Wei-Xiao-Chen algorithm for the linear complexity of sequences over GF(q) with period N = 2pn, where p and q are odd primes, and q is a primitive root ( mod p2). Then the union cost is used, so that an efficient algorithm for computing k-error linear complexity of a sequence with period 2pn over GF(q) is derived, where p and q are odd primes, and q is a primitive root of modulo p2. We also give a validity proof of the proposed algorithm. Finally, a numerical example is presented to illustrate the algorithm.","PeriodicalId":303512,"journal":{"name":"2007 3rd International Workshop on Signal Design and Its Applications in Communications","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An algorithm for the k-error linear complexity of a sequence with period 2pn over GF(q)\",\"authors\":\"Jianqin Zhou, Xirong Xu\",\"doi\":\"10.1109/IWSDA.2007.4408335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We first optimize the structure of the Wei-Xiao-Chen algorithm for the linear complexity of sequences over GF(q) with period N = 2pn, where p and q are odd primes, and q is a primitive root ( mod p2). Then the union cost is used, so that an efficient algorithm for computing k-error linear complexity of a sequence with period 2pn over GF(q) is derived, where p and q are odd primes, and q is a primitive root of modulo p2. We also give a validity proof of the proposed algorithm. Finally, a numerical example is presented to illustrate the algorithm.\",\"PeriodicalId\":303512,\"journal\":{\"name\":\"2007 3rd International Workshop on Signal Design and Its Applications in Communications\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 3rd International Workshop on Signal Design and Its Applications in Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSDA.2007.4408335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 3rd International Workshop on Signal Design and Its Applications in Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSDA.2007.4408335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

首先对周期为N = 2pn的GF(q)序列的线性复杂度优化了Wei-Xiao-Chen算法的结构,其中p和q为奇素数,q为本原根(mod p2)。然后利用并代价,导出了周期为2pn / GF(q)序列的k误差线性复杂度的有效算法,其中p和q为奇素数,q为模p2的本原根。并给出了算法的有效性证明。最后,给出了一个数值算例来说明该算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An algorithm for the k-error linear complexity of a sequence with period 2pn over GF(q)
We first optimize the structure of the Wei-Xiao-Chen algorithm for the linear complexity of sequences over GF(q) with period N = 2pn, where p and q are odd primes, and q is a primitive root ( mod p2). Then the union cost is used, so that an efficient algorithm for computing k-error linear complexity of a sequence with period 2pn over GF(q) is derived, where p and q are odd primes, and q is a primitive root of modulo p2. We also give a validity proof of the proposed algorithm. Finally, a numerical example is presented to illustrate the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信