Noushin Salek Faramarzi, Meet Patel, Sai Harika Bandarupally, Ritwik Banerjee
{"title":"从非结构化文本中提取上下文感知的药物事件","authors":"Noushin Salek Faramarzi, Meet Patel, Sai Harika Bandarupally, Ritwik Banerjee","doi":"10.18653/v1/2023.clinicalnlp-1.11","DOIUrl":null,"url":null,"abstract":"Accurately capturing medication history is crucial in delivering high-quality medical care. The extraction of medication events from unstructured clinical notes, however, is challenging because the information is presented in complex narratives. We address this challenge by leveraging the newly released Contextualized Medication Event Dataset (CMED) as part of our participation in the 2022 National NLP Clinical Challenges (n2c2) shared task. Our study evaluates the performance of various pretrained language models in this task. Further, we find that data augmentation coupled with domain-specific training provides notable improvements. With experiments, we also underscore the importance of careful data preprocessing in medical event detection.","PeriodicalId":216954,"journal":{"name":"Clinical Natural Language Processing Workshop","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Context-aware Medication Event Extraction from Unstructured Text\",\"authors\":\"Noushin Salek Faramarzi, Meet Patel, Sai Harika Bandarupally, Ritwik Banerjee\",\"doi\":\"10.18653/v1/2023.clinicalnlp-1.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately capturing medication history is crucial in delivering high-quality medical care. The extraction of medication events from unstructured clinical notes, however, is challenging because the information is presented in complex narratives. We address this challenge by leveraging the newly released Contextualized Medication Event Dataset (CMED) as part of our participation in the 2022 National NLP Clinical Challenges (n2c2) shared task. Our study evaluates the performance of various pretrained language models in this task. Further, we find that data augmentation coupled with domain-specific training provides notable improvements. With experiments, we also underscore the importance of careful data preprocessing in medical event detection.\",\"PeriodicalId\":216954,\"journal\":{\"name\":\"Clinical Natural Language Processing Workshop\",\"volume\":\"188 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Natural Language Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2023.clinicalnlp-1.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Natural Language Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.clinicalnlp-1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Context-aware Medication Event Extraction from Unstructured Text
Accurately capturing medication history is crucial in delivering high-quality medical care. The extraction of medication events from unstructured clinical notes, however, is challenging because the information is presented in complex narratives. We address this challenge by leveraging the newly released Contextualized Medication Event Dataset (CMED) as part of our participation in the 2022 National NLP Clinical Challenges (n2c2) shared task. Our study evaluates the performance of various pretrained language models in this task. Further, we find that data augmentation coupled with domain-specific training provides notable improvements. With experiments, we also underscore the importance of careful data preprocessing in medical event detection.