美式看涨期权的定价

W. Beh, A. Pooi, K. Goh
{"title":"美式看涨期权的定价","authors":"W. Beh, A. Pooi, K. Goh","doi":"10.1109/ICCRD.2010.125","DOIUrl":null,"url":null,"abstract":"Consider an American basket call option on two assets of which the vector (S1(t) , S2(t)) of asset prices at time t follows a two-dimensional Levy process. Pricing the American call option will entail calculating the expected discounted value of its payoff. Presently, we introduce a method based on numerical integration for pricing two-dimensional American options where there is a finite, but possibly large, number of exercise dates. The results thus obtained show that the non-normality feature in the Levy process does have an effect on the prices of the American call options.","PeriodicalId":158568,"journal":{"name":"2010 Second International Conference on Computer Research and Development","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pricing of American Call Options\",\"authors\":\"W. Beh, A. Pooi, K. Goh\",\"doi\":\"10.1109/ICCRD.2010.125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider an American basket call option on two assets of which the vector (S1(t) , S2(t)) of asset prices at time t follows a two-dimensional Levy process. Pricing the American call option will entail calculating the expected discounted value of its payoff. Presently, we introduce a method based on numerical integration for pricing two-dimensional American options where there is a finite, but possibly large, number of exercise dates. The results thus obtained show that the non-normality feature in the Levy process does have an effect on the prices of the American call options.\",\"PeriodicalId\":158568,\"journal\":{\"name\":\"2010 Second International Conference on Computer Research and Development\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Computer Research and Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCRD.2010.125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computer Research and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCRD.2010.125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑两种资产的一篮子看涨期权,其中t时刻资产价格的向量(S1(t), S2(t))遵循二维Levy过程。美式看涨期权的定价需要计算其收益的预期贴现值。目前,我们引入了一种基于数值积分的二维美式期权定价方法,其中行使日期有限,但可能很大。所得结果表明,列维过程中的非正态性特征确实对美式看涨期权的价格有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pricing of American Call Options
Consider an American basket call option on two assets of which the vector (S1(t) , S2(t)) of asset prices at time t follows a two-dimensional Levy process. Pricing the American call option will entail calculating the expected discounted value of its payoff. Presently, we introduce a method based on numerical integration for pricing two-dimensional American options where there is a finite, but possibly large, number of exercise dates. The results thus obtained show that the non-normality feature in the Levy process does have an effect on the prices of the American call options.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信