用于混合模块应用的轴向磁通机

Adam C. Malloy, A. Mlot, Mark Cordner, M. Lampérth
{"title":"用于混合模块应用的轴向磁通机","authors":"Adam C. Malloy, A. Mlot, Mark Cordner, M. Lampérth","doi":"10.1109/IEVC.2014.7056159","DOIUrl":null,"url":null,"abstract":"Hybrid modules have been adopted by vehicle manufacturers to create hybrid variants of existing models. This paper presents the potential performance of an axial flux permanent magnet machine against typical hybrid module design requirements. A multi physics analytical model is implemented and validated experimentally. This is followed by a parametric design study showing that the axial flux topology provides its maximum specific torques and powers within the available package space. Based on the hybrid module design requirements a design is identified for further development and its performance is confirmed through 3D finite element analysis. It is found that in a package space of 300mm diameter and 90mm length (including casings and water jacket) the axial flux topology offers 390Nm and 98kW for lOs, and 159Nm and 66kW continuously. Future work will include full mechanical design and prototyping of the concept.","PeriodicalId":223794,"journal":{"name":"2014 IEEE International Electric Vehicle Conference (IEVC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Axial flux machines for hybrid module applications\",\"authors\":\"Adam C. Malloy, A. Mlot, Mark Cordner, M. Lampérth\",\"doi\":\"10.1109/IEVC.2014.7056159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid modules have been adopted by vehicle manufacturers to create hybrid variants of existing models. This paper presents the potential performance of an axial flux permanent magnet machine against typical hybrid module design requirements. A multi physics analytical model is implemented and validated experimentally. This is followed by a parametric design study showing that the axial flux topology provides its maximum specific torques and powers within the available package space. Based on the hybrid module design requirements a design is identified for further development and its performance is confirmed through 3D finite element analysis. It is found that in a package space of 300mm diameter and 90mm length (including casings and water jacket) the axial flux topology offers 390Nm and 98kW for lOs, and 159Nm and 66kW continuously. Future work will include full mechanical design and prototyping of the concept.\",\"PeriodicalId\":223794,\"journal\":{\"name\":\"2014 IEEE International Electric Vehicle Conference (IEVC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Electric Vehicle Conference (IEVC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEVC.2014.7056159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Electric Vehicle Conference (IEVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEVC.2014.7056159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

汽车制造商已经采用混合动力模块来制造现有车型的混合动力变体。本文介绍了轴向磁通永磁电机在典型混合模块设计要求下的潜在性能。建立了多物理场分析模型,并进行了实验验证。随后进行的参数化设计研究表明,轴向磁通拓扑在可用的封装空间内提供了最大的比扭矩和功率。根据混合动力模块的设计要求,确定了进一步开发的设计方案,并通过三维有限元分析确定了其性能。研究发现,在直径为300mm、长度为90mm(包括套管和水套)的封装空间中,轴向磁通拓扑可为lOs提供390Nm和98kW,连续提供159Nm和66kW。未来的工作将包括完整的机械设计和概念原型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Axial flux machines for hybrid module applications
Hybrid modules have been adopted by vehicle manufacturers to create hybrid variants of existing models. This paper presents the potential performance of an axial flux permanent magnet machine against typical hybrid module design requirements. A multi physics analytical model is implemented and validated experimentally. This is followed by a parametric design study showing that the axial flux topology provides its maximum specific torques and powers within the available package space. Based on the hybrid module design requirements a design is identified for further development and its performance is confirmed through 3D finite element analysis. It is found that in a package space of 300mm diameter and 90mm length (including casings and water jacket) the axial flux topology offers 390Nm and 98kW for lOs, and 159Nm and 66kW continuously. Future work will include full mechanical design and prototyping of the concept.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信