A. Ringler, R. Anthony, P. Davis, C. Ebeling, Katrin Hafner, R. Mellors, S. Schneider, D. Wilson
{"title":"全球地震台网分辨率的提高:低频地震学的新时代","authors":"A. Ringler, R. Anthony, P. Davis, C. Ebeling, Katrin Hafner, R. Mellors, S. Schneider, D. Wilson","doi":"10.1785/0320220008","DOIUrl":null,"url":null,"abstract":"\n The Global Seismographic Network (GSN)—a global network of ≈150 very broadband stations—is used by researchers to study the free oscillations of the Earth (≈0.3–10 mHz) following large earthquakes. Normal-mode observations can provide information about the radial density and anisotropic velocity structure of the Earth (including near the core–mantle boundary), but only when signal-to-noise ratios at very low frequencies are sufficiently high. Most normal-mode observations in the past three decades have been made using Streckeisen STS-1 vault seismometers. However, these sensors are no longer being manufactured or serviced. Candidate replacement sensors, the Streckeisen STS-6 and the Nanometrics T-360GSN, have been recently installed in boreholes, postholes, and vaults at several GSN stations and GSN testbeds. In this study, we examine normal-mode spectra following three Mw 8 earthquakes in 2021 and from one Mw 8.2 earthquake in 2014 to evaluate the change in GSN low-frequency performance on the vertical component. From this analysis, we conclude that the number of GSN stations capable of resolving normal modes following Mw 8 earthquakes has nearly doubled since 2014. The improved observational capabilities will help better understand the radial velocity and density estimates of the Earth.","PeriodicalId":273018,"journal":{"name":"The Seismic Record","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Improved Resolution across the Global Seismographic Network: A New Era in Low-Frequency Seismology\",\"authors\":\"A. Ringler, R. Anthony, P. Davis, C. Ebeling, Katrin Hafner, R. Mellors, S. Schneider, D. Wilson\",\"doi\":\"10.1785/0320220008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The Global Seismographic Network (GSN)—a global network of ≈150 very broadband stations—is used by researchers to study the free oscillations of the Earth (≈0.3–10 mHz) following large earthquakes. Normal-mode observations can provide information about the radial density and anisotropic velocity structure of the Earth (including near the core–mantle boundary), but only when signal-to-noise ratios at very low frequencies are sufficiently high. Most normal-mode observations in the past three decades have been made using Streckeisen STS-1 vault seismometers. However, these sensors are no longer being manufactured or serviced. Candidate replacement sensors, the Streckeisen STS-6 and the Nanometrics T-360GSN, have been recently installed in boreholes, postholes, and vaults at several GSN stations and GSN testbeds. In this study, we examine normal-mode spectra following three Mw 8 earthquakes in 2021 and from one Mw 8.2 earthquake in 2014 to evaluate the change in GSN low-frequency performance on the vertical component. From this analysis, we conclude that the number of GSN stations capable of resolving normal modes following Mw 8 earthquakes has nearly doubled since 2014. The improved observational capabilities will help better understand the radial velocity and density estimates of the Earth.\",\"PeriodicalId\":273018,\"journal\":{\"name\":\"The Seismic Record\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Seismic Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1785/0320220008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Seismic Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0320220008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved Resolution across the Global Seismographic Network: A New Era in Low-Frequency Seismology
The Global Seismographic Network (GSN)—a global network of ≈150 very broadband stations—is used by researchers to study the free oscillations of the Earth (≈0.3–10 mHz) following large earthquakes. Normal-mode observations can provide information about the radial density and anisotropic velocity structure of the Earth (including near the core–mantle boundary), but only when signal-to-noise ratios at very low frequencies are sufficiently high. Most normal-mode observations in the past three decades have been made using Streckeisen STS-1 vault seismometers. However, these sensors are no longer being manufactured or serviced. Candidate replacement sensors, the Streckeisen STS-6 and the Nanometrics T-360GSN, have been recently installed in boreholes, postholes, and vaults at several GSN stations and GSN testbeds. In this study, we examine normal-mode spectra following three Mw 8 earthquakes in 2021 and from one Mw 8.2 earthquake in 2014 to evaluate the change in GSN low-frequency performance on the vertical component. From this analysis, we conclude that the number of GSN stations capable of resolving normal modes following Mw 8 earthquakes has nearly doubled since 2014. The improved observational capabilities will help better understand the radial velocity and density estimates of the Earth.