遥感影像数据库中的交互式学习

M. Schroeder
{"title":"遥感影像数据库中的交互式学习","authors":"M. Schroeder","doi":"10.1109/IGARSS.1999.771631","DOIUrl":null,"url":null,"abstract":"In this paper we present a concept of interactive learning in an intelligent remote sensing image database that allows users to query by image content. First, an application-free description of the image content is generated at data insertion. This description should globally capture the structures in the image data. Then, in an interactive step, users of different application fields can define their specific semantic labels based on the application-free representation and use them for later database queries. Such a system might help users of all levels of expertise-both experts and novice users-to find images in the archive that are useful for their particular remote sensing application. We briefly review a hierarchical description of the image content and then sketch the basic step of Bayesian inference used for interactive learning. We present one example of this interactive learning taken from our test database consisting of about 1000 small 1024/spl times/1024 images derived from 11 geocoded Landsat TM scenes.","PeriodicalId":169541,"journal":{"name":"IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Interactive learning in remote-sensing image databases\",\"authors\":\"M. Schroeder\",\"doi\":\"10.1109/IGARSS.1999.771631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a concept of interactive learning in an intelligent remote sensing image database that allows users to query by image content. First, an application-free description of the image content is generated at data insertion. This description should globally capture the structures in the image data. Then, in an interactive step, users of different application fields can define their specific semantic labels based on the application-free representation and use them for later database queries. Such a system might help users of all levels of expertise-both experts and novice users-to find images in the archive that are useful for their particular remote sensing application. We briefly review a hierarchical description of the image content and then sketch the basic step of Bayesian inference used for interactive learning. We present one example of this interactive learning taken from our test database consisting of about 1000 small 1024/spl times/1024 images derived from 11 geocoded Landsat TM scenes.\",\"PeriodicalId\":169541,\"journal\":{\"name\":\"IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.1999.771631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.1999.771631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们提出了一个交互式学习的概念,在智能遥感图像数据库中,允许用户根据图像内容进行查询。首先,在数据插入时生成图像内容的无应用程序描述。该描述应该全局捕获图像数据中的结构。然后,在交互步骤中,不同应用程序字段的用户可以基于与应用程序无关的表示定义其特定的语义标签,并将其用于以后的数据库查询。这样的系统可以帮助所有专业水平的用户(包括专家和新手用户)在存档中找到对其特定遥感应用有用的图像。我们简要回顾了图像内容的层次描述,然后概述了用于交互学习的贝叶斯推理的基本步骤。我们展示了一个交互式学习的示例,该示例取自我们的测试数据库,该数据库由来自11个地理编码的Landsat TM场景的约1000张小1024/spl次/1024图像组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactive learning in remote-sensing image databases
In this paper we present a concept of interactive learning in an intelligent remote sensing image database that allows users to query by image content. First, an application-free description of the image content is generated at data insertion. This description should globally capture the structures in the image data. Then, in an interactive step, users of different application fields can define their specific semantic labels based on the application-free representation and use them for later database queries. Such a system might help users of all levels of expertise-both experts and novice users-to find images in the archive that are useful for their particular remote sensing application. We briefly review a hierarchical description of the image content and then sketch the basic step of Bayesian inference used for interactive learning. We present one example of this interactive learning taken from our test database consisting of about 1000 small 1024/spl times/1024 images derived from 11 geocoded Landsat TM scenes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信