基于新型混合进化算法的调频声参数识别

M.T. Vakil Baghmisheh, M. Alinia Ahandani, M. Talebi
{"title":"基于新型混合进化算法的调频声参数识别","authors":"M.T. Vakil Baghmisheh, M. Alinia Ahandani, M. Talebi","doi":"10.1109/ISTEL.2008.4651273","DOIUrl":null,"url":null,"abstract":"The frequency modulation sound parameter identification is a complex multimodal optimization problem. In this paper, we proposed four evolutionary hybrid algorithms to solve this problem. First we combine genetic algorithm (GA) and queen-bee algorithm (QB) with a random optimization method (RO) and generate memetic and QB-memetic hybrid algorithms, respectively; then modified Nelder-Mead simplex algorithm (MNM) combine with particle swarm optimization (PSO) and differential evolution (DE) algorithms and generate MNM-PSO and MNM-DE hybrid algorithms, respectively. The proposed algorithms are compared in terms of three measures: success rate, average values of the cost function in all successful runs, and the minimum cost in 20 runs. The obtained results demostrate the proposed hybrid algorithms have the better performance than their non-hybrid competitors in the most times. Also The PSO has the best minimum and average value of the cost function and the MNM-PSO has the best success rate.","PeriodicalId":133602,"journal":{"name":"2008 International Symposium on Telecommunications","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Frequency modulation sound parameter identification using novel hybrid evolutionary algorithms\",\"authors\":\"M.T. Vakil Baghmisheh, M. Alinia Ahandani, M. Talebi\",\"doi\":\"10.1109/ISTEL.2008.4651273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The frequency modulation sound parameter identification is a complex multimodal optimization problem. In this paper, we proposed four evolutionary hybrid algorithms to solve this problem. First we combine genetic algorithm (GA) and queen-bee algorithm (QB) with a random optimization method (RO) and generate memetic and QB-memetic hybrid algorithms, respectively; then modified Nelder-Mead simplex algorithm (MNM) combine with particle swarm optimization (PSO) and differential evolution (DE) algorithms and generate MNM-PSO and MNM-DE hybrid algorithms, respectively. The proposed algorithms are compared in terms of three measures: success rate, average values of the cost function in all successful runs, and the minimum cost in 20 runs. The obtained results demostrate the proposed hybrid algorithms have the better performance than their non-hybrid competitors in the most times. Also The PSO has the best minimum and average value of the cost function and the MNM-PSO has the best success rate.\",\"PeriodicalId\":133602,\"journal\":{\"name\":\"2008 International Symposium on Telecommunications\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposium on Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISTEL.2008.4651273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTEL.2008.4651273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

调频声参数辨识是一个复杂的多模态优化问题。在本文中,我们提出了四种进化混合算法来解决这个问题。首先将遗传算法(GA)和蜂王算法(QB)与随机优化方法(RO)相结合,分别生成模因和QB-模因混合算法;然后将改进的Nelder-Mead单纯形算法(MNM)与粒子群优化(PSO)和差分进化(DE)算法结合,分别生成MNM-PSO和MNM-DE混合算法。本文从三个方面对算法进行了比较:成功率、所有成功运行的成本函数平均值和20次运行的最小成本。结果表明,在大多数情况下,所提出的混合算法比非混合算法具有更好的性能。同时,粒子群算法具有最佳的成本函数最小值和平均值,MNM-PSO算法具有最佳的成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency modulation sound parameter identification using novel hybrid evolutionary algorithms
The frequency modulation sound parameter identification is a complex multimodal optimization problem. In this paper, we proposed four evolutionary hybrid algorithms to solve this problem. First we combine genetic algorithm (GA) and queen-bee algorithm (QB) with a random optimization method (RO) and generate memetic and QB-memetic hybrid algorithms, respectively; then modified Nelder-Mead simplex algorithm (MNM) combine with particle swarm optimization (PSO) and differential evolution (DE) algorithms and generate MNM-PSO and MNM-DE hybrid algorithms, respectively. The proposed algorithms are compared in terms of three measures: success rate, average values of the cost function in all successful runs, and the minimum cost in 20 runs. The obtained results demostrate the proposed hybrid algorithms have the better performance than their non-hybrid competitors in the most times. Also The PSO has the best minimum and average value of the cost function and the MNM-PSO has the best success rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信