{"title":"二元多项式理想中分离变量","authors":"Manfred Buchacher, Manuel Kauers, G. Pogudin","doi":"10.1145/3373207.3404028","DOIUrl":null,"url":null,"abstract":"We present an algorithm which for any given ideal I ⊆ K[x, y] finds all elements of I that have the form f(x) - g(y), i.e., all elements in which no monomial is a multiple of xy.","PeriodicalId":186699,"journal":{"name":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Separating variables in bivariate polynomial ideals\",\"authors\":\"Manfred Buchacher, Manuel Kauers, G. Pogudin\",\"doi\":\"10.1145/3373207.3404028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithm which for any given ideal I ⊆ K[x, y] finds all elements of I that have the form f(x) - g(y), i.e., all elements in which no monomial is a multiple of xy.\",\"PeriodicalId\":186699,\"journal\":{\"name\":\"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3373207.3404028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3373207.3404028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Separating variables in bivariate polynomial ideals
We present an algorithm which for any given ideal I ⊆ K[x, y] finds all elements of I that have the form f(x) - g(y), i.e., all elements in which no monomial is a multiple of xy.