基于多种书目信息的图书推荐配方

S. Maneewongvatana, Apilak Suntornacane, N. Assawawayuyothin
{"title":"基于多种书目信息的图书推荐配方","authors":"S. Maneewongvatana, Apilak Suntornacane, N. Assawawayuyothin","doi":"10.1145/3290511.3290548","DOIUrl":null,"url":null,"abstract":"We proposed the formulation for discovering the candidate bibliographic records for the primary resource by integrating multiple bibliographic parameters including call number, subject heading, and title's keyword. To imitate the searching procedure of librarians, we can customize weights for assigning different priority for different bibliographic parameters. The precision and recall of the retrieval lists were compared to the performance of librarians. The results show that the quality of the recommended list formulated by our proposed system is comparable to the list from librarian. However, the performance of the proposed system can be improved by integrating NLP algorithm, and more bibliographic information.","PeriodicalId":446455,"journal":{"name":"International Conference on Education Technology and Computer","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Book recommended formulation based on multiple bibliographic information\",\"authors\":\"S. Maneewongvatana, Apilak Suntornacane, N. Assawawayuyothin\",\"doi\":\"10.1145/3290511.3290548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We proposed the formulation for discovering the candidate bibliographic records for the primary resource by integrating multiple bibliographic parameters including call number, subject heading, and title's keyword. To imitate the searching procedure of librarians, we can customize weights for assigning different priority for different bibliographic parameters. The precision and recall of the retrieval lists were compared to the performance of librarians. The results show that the quality of the recommended list formulated by our proposed system is comparable to the list from librarian. However, the performance of the proposed system can be improved by integrating NLP algorithm, and more bibliographic information.\",\"PeriodicalId\":446455,\"journal\":{\"name\":\"International Conference on Education Technology and Computer\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Education Technology and Computer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3290511.3290548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Education Technology and Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3290511.3290548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种通过整合多个书目参数(包括呼号、主题标题和标题关键字)来发现主要资源候选书目记录的公式。为了模仿图书馆员的搜索过程,我们可以定制权值,为不同的书目参数分配不同的优先级。将检索表的查准率和查全率与图书馆员的工作进行了比较。结果表明,该系统生成的推荐书目质量与图书馆员推荐书目质量相当。然而,通过整合自然语言处理算法和更多的书目信息,可以提高系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Book recommended formulation based on multiple bibliographic information
We proposed the formulation for discovering the candidate bibliographic records for the primary resource by integrating multiple bibliographic parameters including call number, subject heading, and title's keyword. To imitate the searching procedure of librarians, we can customize weights for assigning different priority for different bibliographic parameters. The precision and recall of the retrieval lists were compared to the performance of librarians. The results show that the quality of the recommended list formulated by our proposed system is comparable to the list from librarian. However, the performance of the proposed system can be improved by integrating NLP algorithm, and more bibliographic information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信