基于小波的contourlet变换和多重分形对心率信号进行信号处理

Zhenghua Shu, Guodon Liu, Zhihua Xie, Ying Xiong
{"title":"基于小波的contourlet变换和多重分形对心率信号进行信号处理","authors":"Zhenghua Shu, Guodon Liu, Zhihua Xie, Ying Xiong","doi":"10.1109/CISP.2015.7408117","DOIUrl":null,"url":null,"abstract":"This paper presents a Signal Processing method on Heart Rate Signals Using The Wavelet-based Contourlet Transform and multifractal. The method is based on the Wavelet-based Contourlet transform and filter banks. The algorithm implementation process is as follows. Firstly the Wavelet-based contourlet transform orthogonal decomposes heart rate variability signal fractal component. Power spectrum of heart rate variability signal fractal component is estimated by the self regression model. The Walker equation Yule is used to fit the fractal components of the double logarithm coordinate power spectrum, and the slope is estimated. Finally, the fractal dimension of the heart rate variability signal is estimated by formula D=2-(γ-1)/2. In order to validate the feasibility of the proposed algorithm of stability and reliability, the MIT-BIH ECG database fractal signal is verified. The results show that the algorithm is applied to calculate the heart rate variability signal fractal dimension is feasible.","PeriodicalId":167631,"journal":{"name":"2015 8th International Congress on Image and Signal Processing (CISP)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Signal processing on heart rate signals using the wavelet-based contourlet transform and multifractal\",\"authors\":\"Zhenghua Shu, Guodon Liu, Zhihua Xie, Ying Xiong\",\"doi\":\"10.1109/CISP.2015.7408117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Signal Processing method on Heart Rate Signals Using The Wavelet-based Contourlet Transform and multifractal. The method is based on the Wavelet-based Contourlet transform and filter banks. The algorithm implementation process is as follows. Firstly the Wavelet-based contourlet transform orthogonal decomposes heart rate variability signal fractal component. Power spectrum of heart rate variability signal fractal component is estimated by the self regression model. The Walker equation Yule is used to fit the fractal components of the double logarithm coordinate power spectrum, and the slope is estimated. Finally, the fractal dimension of the heart rate variability signal is estimated by formula D=2-(γ-1)/2. In order to validate the feasibility of the proposed algorithm of stability and reliability, the MIT-BIH ECG database fractal signal is verified. The results show that the algorithm is applied to calculate the heart rate variability signal fractal dimension is feasible.\",\"PeriodicalId\":167631,\"journal\":{\"name\":\"2015 8th International Congress on Image and Signal Processing (CISP)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 8th International Congress on Image and Signal Processing (CISP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP.2015.7408117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 8th International Congress on Image and Signal Processing (CISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP.2015.7408117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于小波的Contourlet变换和多重分形的心率信号处理方法。该方法基于基于小波的Contourlet变换和滤波器组。算法实现过程如下。首先基于小波的contourlet正交变换分解心率变异性信号的分形分量。利用自回归模型估计心率变异性信号分形分量的功率谱。采用Walker方程Yule对双对数坐标功率谱的分形分量进行拟合,并对其斜率进行估计。最后,通过公式D=2-(γ-1)/2估计心率变异性信号的分形维数。为了验证所提算法的稳定性和可靠性,对MIT-BIH心电数据库分形信号进行了验证。结果表明,该算法应用于心率变异性信号分形维数的计算是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signal processing on heart rate signals using the wavelet-based contourlet transform and multifractal
This paper presents a Signal Processing method on Heart Rate Signals Using The Wavelet-based Contourlet Transform and multifractal. The method is based on the Wavelet-based Contourlet transform and filter banks. The algorithm implementation process is as follows. Firstly the Wavelet-based contourlet transform orthogonal decomposes heart rate variability signal fractal component. Power spectrum of heart rate variability signal fractal component is estimated by the self regression model. The Walker equation Yule is used to fit the fractal components of the double logarithm coordinate power spectrum, and the slope is estimated. Finally, the fractal dimension of the heart rate variability signal is estimated by formula D=2-(γ-1)/2. In order to validate the feasibility of the proposed algorithm of stability and reliability, the MIT-BIH ECG database fractal signal is verified. The results show that the algorithm is applied to calculate the heart rate variability signal fractal dimension is feasible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信