C. Hou, Wenze Yao, Wei Liu, Yiqin Chen, H. Duan, Jie Liu
{"title":"基于FMM和SaaS的大型电子束光刻接近效应超快速精确校正","authors":"C. Hou, Wenze Yao, Wei Liu, Yiqin Chen, H. Duan, Jie Liu","doi":"10.1109/IWAPS51164.2020.9286816","DOIUrl":null,"url":null,"abstract":"This paper proposes a fast proximity effect correction (PEC) methodology based on fast multipole method (FMM), to simultaneously achieve high calculation speed and accuracy. It is shown that the proposed methodology has both linear computational time complexity, $O(N)$, where $N$ is number of pixels, and linear parallelization speedup on multiple central processing unit (CPU) cores. These linear scaling scenarios are ideal traits for PEC of large-scale electron beam lithography (EBL). The proposed methodology has been implemented using C++ and OpenMP programming tools, and freely available via the Software-as-a-Service (SaaS) mode (http://hnupecsvl.qicp.vip).","PeriodicalId":165983,"journal":{"name":"2020 International Workshop on Advanced Patterning Solutions (IWAPS)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Ultrafast and Accurate Proximity Effect Correction of Large-Scale Electron Beam Lithography based on FMM and SaaS\",\"authors\":\"C. Hou, Wenze Yao, Wei Liu, Yiqin Chen, H. Duan, Jie Liu\",\"doi\":\"10.1109/IWAPS51164.2020.9286816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a fast proximity effect correction (PEC) methodology based on fast multipole method (FMM), to simultaneously achieve high calculation speed and accuracy. It is shown that the proposed methodology has both linear computational time complexity, $O(N)$, where $N$ is number of pixels, and linear parallelization speedup on multiple central processing unit (CPU) cores. These linear scaling scenarios are ideal traits for PEC of large-scale electron beam lithography (EBL). The proposed methodology has been implemented using C++ and OpenMP programming tools, and freely available via the Software-as-a-Service (SaaS) mode (http://hnupecsvl.qicp.vip).\",\"PeriodicalId\":165983,\"journal\":{\"name\":\"2020 International Workshop on Advanced Patterning Solutions (IWAPS)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Workshop on Advanced Patterning Solutions (IWAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWAPS51164.2020.9286816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Workshop on Advanced Patterning Solutions (IWAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAPS51164.2020.9286816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultrafast and Accurate Proximity Effect Correction of Large-Scale Electron Beam Lithography based on FMM and SaaS
This paper proposes a fast proximity effect correction (PEC) methodology based on fast multipole method (FMM), to simultaneously achieve high calculation speed and accuracy. It is shown that the proposed methodology has both linear computational time complexity, $O(N)$, where $N$ is number of pixels, and linear parallelization speedup on multiple central processing unit (CPU) cores. These linear scaling scenarios are ideal traits for PEC of large-scale electron beam lithography (EBL). The proposed methodology has been implemented using C++ and OpenMP programming tools, and freely available via the Software-as-a-Service (SaaS) mode (http://hnupecsvl.qicp.vip).