用加法和乘法杨不等式求解正定矩阵的行列式不等式

S. Dragomir
{"title":"用加法和乘法杨不等式求解正定矩阵的行列式不等式","authors":"S. Dragomir","doi":"10.18273/revint.v40n2-2022004","DOIUrl":null,"url":null,"abstract":"In this paper we prove among others that, if the positive definite matrices A, B of order n satisfy the condition 0 < mIn ≤ B − A ≤ M In, for some constants 0 < m < M, where In is the identity matrix, then 0 ≤ (1 − t) [det (A)]−1 + t [det (A + mIn)]−1 − [det (A + mtIn)]−1 ≤ (1 − t) [det (A)]−1 + t [det (B)]−1 − [det ((1 − t) A + tB)]−1 ≤ (1 − t) [det (A)]−1 + t [det (A + M In)]−1 − [det (A + M tIn)]−1 , for all t ∈ [0, 1]","PeriodicalId":402331,"journal":{"name":"Revista Integración","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determinant Inequalities for Positive Definite Matrices Via Additive and Multiplicative Young Inequalities\",\"authors\":\"S. Dragomir\",\"doi\":\"10.18273/revint.v40n2-2022004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove among others that, if the positive definite matrices A, B of order n satisfy the condition 0 < mIn ≤ B − A ≤ M In, for some constants 0 < m < M, where In is the identity matrix, then 0 ≤ (1 − t) [det (A)]−1 + t [det (A + mIn)]−1 − [det (A + mtIn)]−1 ≤ (1 − t) [det (A)]−1 + t [det (B)]−1 − [det ((1 − t) A + tB)]−1 ≤ (1 − t) [det (A)]−1 + t [det (A + M In)]−1 − [det (A + M tIn)]−1 , for all t ∈ [0, 1]\",\"PeriodicalId\":402331,\"journal\":{\"name\":\"Revista Integración\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Integración\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18273/revint.v40n2-2022004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Integración","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18273/revint.v40n2-2022004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明等,如果正定矩阵A, B (0 < n满足条件最小值≤B−≤米,对于一些常量0 < M < M,在单位矩阵,然后0≤(1−t)[侦破(A)]−1 + t[侦破(A +分钟)]−1−[侦破(A + mtIn)]−1≤(1−t)[侦破(A)]−1 + t[侦破(B)]−1−[检波器((1−t) +结核病)]−1≤(1−t)[侦破(A)]−1 + t[侦破(A + M)] 1−−−(侦破(锡+ M)) 1,所有t∈[0,1]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determinant Inequalities for Positive Definite Matrices Via Additive and Multiplicative Young Inequalities
In this paper we prove among others that, if the positive definite matrices A, B of order n satisfy the condition 0 < mIn ≤ B − A ≤ M In, for some constants 0 < m < M, where In is the identity matrix, then 0 ≤ (1 − t) [det (A)]−1 + t [det (A + mIn)]−1 − [det (A + mtIn)]−1 ≤ (1 − t) [det (A)]−1 + t [det (B)]−1 − [det ((1 − t) A + tB)]−1 ≤ (1 − t) [det (A)]−1 + t [det (A + M In)]−1 − [det (A + M tIn)]−1 , for all t ∈ [0, 1]
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信