{"title":"具有低精细度半球形微腔读出的光子MEMS加速度计","authors":"Y. Bao, F. Zhou, T. Lebrun, J. Gorman","doi":"10.1109/OMN.2017.8051490","DOIUrl":null,"url":null,"abstract":"This paper describes the design, fabrication, and testing of a photonic MEMS accelerometer that uses a hemispherical microcavity to transduce the motion of the proof mass. The cavity design provides stable operation that is relatively tolerant of misalignment errors. The prototype sensor is shown to have optical resonances that closely match the expected Airy function model.","PeriodicalId":411243,"journal":{"name":"2017 International Conference on Optical MEMS and Nanophotonics (OMN)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A photonic MEMS accelerometer with a low-finesse hemispherical microcavity readout\",\"authors\":\"Y. Bao, F. Zhou, T. Lebrun, J. Gorman\",\"doi\":\"10.1109/OMN.2017.8051490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the design, fabrication, and testing of a photonic MEMS accelerometer that uses a hemispherical microcavity to transduce the motion of the proof mass. The cavity design provides stable operation that is relatively tolerant of misalignment errors. The prototype sensor is shown to have optical resonances that closely match the expected Airy function model.\",\"PeriodicalId\":411243,\"journal\":{\"name\":\"2017 International Conference on Optical MEMS and Nanophotonics (OMN)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Optical MEMS and Nanophotonics (OMN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OMN.2017.8051490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Optical MEMS and Nanophotonics (OMN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMN.2017.8051490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A photonic MEMS accelerometer with a low-finesse hemispherical microcavity readout
This paper describes the design, fabrication, and testing of a photonic MEMS accelerometer that uses a hemispherical microcavity to transduce the motion of the proof mass. The cavity design provides stable operation that is relatively tolerant of misalignment errors. The prototype sensor is shown to have optical resonances that closely match the expected Airy function model.