{"title":"基于团队的无人驾驶车辆应用的超低延迟地理路由方案","authors":"Ahmed Bader, Mohamed-Slim Alouini","doi":"10.1109/GLOCOMW.2015.7414087","DOIUrl":null,"url":null,"abstract":"Results and lessons learned from the implementation of a novel ultra low-latency geo-routing scheme are presented in this paper. The geo-routing scheme is intended for team-based mobile systems whereby a cluster of unmanned autonomous vehicles are deployed to accomplish a critical mission under human supervision. The contention-free nature of the developed scheme lends itself to jointly achieve lower latency and higher throughput. Implementation challenges are presented and corresponding resolutions are discussed herewith.","PeriodicalId":315934,"journal":{"name":"2015 IEEE Globecom Workshops (GC Wkshps)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Ultra-Low-Latency Geo-Routing Scheme for Team-Based Unmanned Vehicular Applications\",\"authors\":\"Ahmed Bader, Mohamed-Slim Alouini\",\"doi\":\"10.1109/GLOCOMW.2015.7414087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Results and lessons learned from the implementation of a novel ultra low-latency geo-routing scheme are presented in this paper. The geo-routing scheme is intended for team-based mobile systems whereby a cluster of unmanned autonomous vehicles are deployed to accomplish a critical mission under human supervision. The contention-free nature of the developed scheme lends itself to jointly achieve lower latency and higher throughput. Implementation challenges are presented and corresponding resolutions are discussed herewith.\",\"PeriodicalId\":315934,\"journal\":{\"name\":\"2015 IEEE Globecom Workshops (GC Wkshps)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Globecom Workshops (GC Wkshps)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOMW.2015.7414087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOMW.2015.7414087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Ultra-Low-Latency Geo-Routing Scheme for Team-Based Unmanned Vehicular Applications
Results and lessons learned from the implementation of a novel ultra low-latency geo-routing scheme are presented in this paper. The geo-routing scheme is intended for team-based mobile systems whereby a cluster of unmanned autonomous vehicles are deployed to accomplish a critical mission under human supervision. The contention-free nature of the developed scheme lends itself to jointly achieve lower latency and higher throughput. Implementation challenges are presented and corresponding resolutions are discussed herewith.