基于灰色关联分析和PID控制的数控钻孔过程自适应优化

Mary J. Susai, U. Sabura Banu, D. Dinakaran, R. S. Nakandhrakumar
{"title":"基于灰色关联分析和PID控制的数控钻孔过程自适应优化","authors":"Mary J. Susai, U. Sabura Banu, D. Dinakaran, R. S. Nakandhrakumar","doi":"10.1109/RACE.2015.7097277","DOIUrl":null,"url":null,"abstract":"Adaptive optimization and control of machining process is of great significance due to cost saving and better tool utilization. This paper describes the adaptive optimization of drilling process using grey relational analysis. The PID control is used to implement the optimization strategy to automatically adjust the spindle speed and feed of the CNC servo drive system. For this purpose, the tool wear and the Metal Removal Rate are modeled using Neural networks. The inputs to the model are the spindle speed, feed and vibration signals produced as a result of machining. The models show an deviation of 3% and 2% respectively. The control strategy is simulated using MATLAB simulink. The simulation results shows that the servo mechanism tracks the optimized values with an overall accuracy of 97%.","PeriodicalId":161131,"journal":{"name":"2015 International Conference on Robotics, Automation, Control and Embedded Systems (RACE)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Adaptive optimization using grey relational analysis and PID control of CNC drilling process\",\"authors\":\"Mary J. Susai, U. Sabura Banu, D. Dinakaran, R. S. Nakandhrakumar\",\"doi\":\"10.1109/RACE.2015.7097277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive optimization and control of machining process is of great significance due to cost saving and better tool utilization. This paper describes the adaptive optimization of drilling process using grey relational analysis. The PID control is used to implement the optimization strategy to automatically adjust the spindle speed and feed of the CNC servo drive system. For this purpose, the tool wear and the Metal Removal Rate are modeled using Neural networks. The inputs to the model are the spindle speed, feed and vibration signals produced as a result of machining. The models show an deviation of 3% and 2% respectively. The control strategy is simulated using MATLAB simulink. The simulation results shows that the servo mechanism tracks the optimized values with an overall accuracy of 97%.\",\"PeriodicalId\":161131,\"journal\":{\"name\":\"2015 International Conference on Robotics, Automation, Control and Embedded Systems (RACE)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Robotics, Automation, Control and Embedded Systems (RACE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RACE.2015.7097277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Robotics, Automation, Control and Embedded Systems (RACE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RACE.2015.7097277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

加工过程的自适应优化与控制对于节省成本和提高刀具利用率具有重要意义。本文介绍了用灰色关联分析方法对钻孔工艺进行自适应优化。采用PID控制实现数控伺服驱动系统主轴转速和进给的自动调整策略。为此,利用神经网络对刀具磨损和金属去除率进行建模。该模型的输入是加工产生的主轴转速、进给和振动信号。模型的偏差分别为3%和2%。利用MATLAB simulink对控制策略进行了仿真。仿真结果表明,伺服机构跟踪优化值的总体精度为97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive optimization using grey relational analysis and PID control of CNC drilling process
Adaptive optimization and control of machining process is of great significance due to cost saving and better tool utilization. This paper describes the adaptive optimization of drilling process using grey relational analysis. The PID control is used to implement the optimization strategy to automatically adjust the spindle speed and feed of the CNC servo drive system. For this purpose, the tool wear and the Metal Removal Rate are modeled using Neural networks. The inputs to the model are the spindle speed, feed and vibration signals produced as a result of machining. The models show an deviation of 3% and 2% respectively. The control strategy is simulated using MATLAB simulink. The simulation results shows that the servo mechanism tracks the optimized values with an overall accuracy of 97%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信