特征向量中心性揭示了脑电中特定任务电极连接的时间过程

G. Newman, M. Fifer, H. Benz, N. Crone, N. Thakor
{"title":"特征向量中心性揭示了脑电中特定任务电极连接的时间过程","authors":"G. Newman, M. Fifer, H. Benz, N. Crone, N. Thakor","doi":"10.1109/NER.2015.7146628","DOIUrl":null,"url":null,"abstract":"Connectivity measures provide a quantification of information flow across electrodes in human subject electrocorticography (ECoG). They do not, however, lend themselves to direct interpretation due to the combinatorial size increase of the feature space. We utilize time-varying dynamic Bayesian networks (TV-DBN) as a model of the individual ECoG electrode activity based on the activation of the electrode array. Using the high gamma power TV-DBN connectivity matrices, we determine if eigenvector centrality can objectively highlight the important interactions between electrodes. The statistically thresholded centrality measure reveals task-related differences in the significant electrode subsets during distinct task phases (p<;0.05; 13 significant electrodes overall: 2 exclusive to the cue processing phase, 3 exclusive to the motor output phase). These results suggest that TV-DBN and centrality analysis can be used in an online brain-mapping system to show regions of the brain relevant to real-time task performance.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Eigenvector centrality reveals the time course of task-specific electrode connectivity in human ECoG\",\"authors\":\"G. Newman, M. Fifer, H. Benz, N. Crone, N. Thakor\",\"doi\":\"10.1109/NER.2015.7146628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Connectivity measures provide a quantification of information flow across electrodes in human subject electrocorticography (ECoG). They do not, however, lend themselves to direct interpretation due to the combinatorial size increase of the feature space. We utilize time-varying dynamic Bayesian networks (TV-DBN) as a model of the individual ECoG electrode activity based on the activation of the electrode array. Using the high gamma power TV-DBN connectivity matrices, we determine if eigenvector centrality can objectively highlight the important interactions between electrodes. The statistically thresholded centrality measure reveals task-related differences in the significant electrode subsets during distinct task phases (p<;0.05; 13 significant electrodes overall: 2 exclusive to the cue processing phase, 3 exclusive to the motor output phase). These results suggest that TV-DBN and centrality analysis can be used in an online brain-mapping system to show regions of the brain relevant to real-time task performance.\",\"PeriodicalId\":137451,\"journal\":{\"name\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NER.2015.7146628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2015.7146628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

连通性措施提供了人类受试者皮质电图(ECoG)中跨电极信息流的量化。然而,由于特征空间的组合大小增加,它们不适合直接解释。我们利用时变动态贝叶斯网络(TV-DBN)作为基于电极阵列激活的单个ECoG电极活性模型。利用高伽马功率TV-DBN连接矩阵,我们确定特征向量中心性是否可以客观地突出电极之间的重要相互作用。统计阈值中心性测量显示,在不同的任务阶段,显著电极子集的任务相关差异(p<;0.05;总共有13个重要电极:2个专属于线索处理阶段,3个专属于电机输出阶段)。这些结果表明,TV-DBN和中心性分析可以用于在线脑图系统,以显示与实时任务表现相关的大脑区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eigenvector centrality reveals the time course of task-specific electrode connectivity in human ECoG
Connectivity measures provide a quantification of information flow across electrodes in human subject electrocorticography (ECoG). They do not, however, lend themselves to direct interpretation due to the combinatorial size increase of the feature space. We utilize time-varying dynamic Bayesian networks (TV-DBN) as a model of the individual ECoG electrode activity based on the activation of the electrode array. Using the high gamma power TV-DBN connectivity matrices, we determine if eigenvector centrality can objectively highlight the important interactions between electrodes. The statistically thresholded centrality measure reveals task-related differences in the significant electrode subsets during distinct task phases (p<;0.05; 13 significant electrodes overall: 2 exclusive to the cue processing phase, 3 exclusive to the motor output phase). These results suggest that TV-DBN and centrality analysis can be used in an online brain-mapping system to show regions of the brain relevant to real-time task performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信