基于遗传算法的递归神经网络启发式学习

T. Fukuda, T. Kohno, T. Shibata
{"title":"基于遗传算法的递归神经网络启发式学习","authors":"T. Fukuda, T. Kohno, T. Shibata","doi":"10.1109/ETFA.1993.396427","DOIUrl":null,"url":null,"abstract":"Recurrent neural networks have dynamic characteristics and express functions of time. Recurrent neural networks can memorize robotic motions, i.e., trajectories of manipulators For this purpose, it is necessary to determine appropriate interconnection weights of the network. A new learning scheme for the recurrent neural networks by genetic algorithm (GA) is presented. The GA is applied to determine interconnection weights of the recurrent neural networks. The proposed approach is compared with backpropagation through time for recurrent neural networks. Simulation illustrates the performance of the proposed approach.<<ETX>>","PeriodicalId":239174,"journal":{"name":"Proceedings of IEEE 2nd International Workshop on Emerging Technologies and Factory Automation (ETFA '93)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Heuristic learning by genetic algorithm for recurrent neural network\",\"authors\":\"T. Fukuda, T. Kohno, T. Shibata\",\"doi\":\"10.1109/ETFA.1993.396427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recurrent neural networks have dynamic characteristics and express functions of time. Recurrent neural networks can memorize robotic motions, i.e., trajectories of manipulators For this purpose, it is necessary to determine appropriate interconnection weights of the network. A new learning scheme for the recurrent neural networks by genetic algorithm (GA) is presented. The GA is applied to determine interconnection weights of the recurrent neural networks. The proposed approach is compared with backpropagation through time for recurrent neural networks. Simulation illustrates the performance of the proposed approach.<<ETX>>\",\"PeriodicalId\":239174,\"journal\":{\"name\":\"Proceedings of IEEE 2nd International Workshop on Emerging Technologies and Factory Automation (ETFA '93)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE 2nd International Workshop on Emerging Technologies and Factory Automation (ETFA '93)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.1993.396427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE 2nd International Workshop on Emerging Technologies and Factory Automation (ETFA '93)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.1993.396427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

递归神经网络具有动态特性和时间函数。递归神经网络可以记忆机器人的运动,即机械手的运动轨迹。为此,有必要确定合适的网络互连权值。提出了一种基于遗传算法的递归神经网络学习新方案。应用遗传算法确定递归神经网络的互连权值。将该方法与递归神经网络的随时间反向传播进行了比较。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heuristic learning by genetic algorithm for recurrent neural network
Recurrent neural networks have dynamic characteristics and express functions of time. Recurrent neural networks can memorize robotic motions, i.e., trajectories of manipulators For this purpose, it is necessary to determine appropriate interconnection weights of the network. A new learning scheme for the recurrent neural networks by genetic algorithm (GA) is presented. The GA is applied to determine interconnection weights of the recurrent neural networks. The proposed approach is compared with backpropagation through time for recurrent neural networks. Simulation illustrates the performance of the proposed approach.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信