{"title":"采用带惯性测量装置的相机进行无气味盲图像去模糊","authors":"Chin-Yuan Tseng, Jian-An Chen, Jwusheng Hu","doi":"10.1109/ROBIO.2012.6491278","DOIUrl":null,"url":null,"abstract":"Image blur resulting from camera motion is an annoying factor for robotic vision, especially for high-speed applications. This work proposes a sensor fusion model for blind image de-blurring using inertial measurement unit. The model attempts to observe the camera motion, estimate the point spread function and de-convolute the image simultaneously. To solve the problem, an iterative estimation procedure using Maximum A-Posteriori Expectation-Maximization (MAP-EM) algorithms and Unscented Kalman Filter are proposed. Simulation results show the feasibility of the proposed formulation to blindly de-blurring the image under camera motion.","PeriodicalId":426468,"journal":{"name":"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Unscented blind image de-blurring using camera with inertial measurement unit\",\"authors\":\"Chin-Yuan Tseng, Jian-An Chen, Jwusheng Hu\",\"doi\":\"10.1109/ROBIO.2012.6491278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image blur resulting from camera motion is an annoying factor for robotic vision, especially for high-speed applications. This work proposes a sensor fusion model for blind image de-blurring using inertial measurement unit. The model attempts to observe the camera motion, estimate the point spread function and de-convolute the image simultaneously. To solve the problem, an iterative estimation procedure using Maximum A-Posteriori Expectation-Maximization (MAP-EM) algorithms and Unscented Kalman Filter are proposed. Simulation results show the feasibility of the proposed formulation to blindly de-blurring the image under camera motion.\",\"PeriodicalId\":426468,\"journal\":{\"name\":\"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2012.6491278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2012.6491278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unscented blind image de-blurring using camera with inertial measurement unit
Image blur resulting from camera motion is an annoying factor for robotic vision, especially for high-speed applications. This work proposes a sensor fusion model for blind image de-blurring using inertial measurement unit. The model attempts to observe the camera motion, estimate the point spread function and de-convolute the image simultaneously. To solve the problem, an iterative estimation procedure using Maximum A-Posteriori Expectation-Maximization (MAP-EM) algorithms and Unscented Kalman Filter are proposed. Simulation results show the feasibility of the proposed formulation to blindly de-blurring the image under camera motion.