用不同分布的子混合模型聚类

I. Nagy, E. Suzdaleva, Matej Petrous
{"title":"用不同分布的子混合模型聚类","authors":"I. Nagy, E. Suzdaleva, Matej Petrous","doi":"10.1109/SISY.2017.8080574","DOIUrl":null,"url":null,"abstract":"This paper deals with a modeling of data by several mixtures of different distributions within a task of clustering. This issue can be required from a practical point of view, e.g., for a multi-modal system, which generates measurements described by different distributions. The approach is based on the partition of the data on several parts, the factorization of the joint probability density function according to these parts and the estimation of each conditional mixture separately. Due to the data-based construction of the general model from the estimated components, the most suitable combination of the components is used at each time instant. The illustrative experiments are demonstrated.","PeriodicalId":352891,"journal":{"name":"2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Clustering with a model of sub-mixtures of different distributions\",\"authors\":\"I. Nagy, E. Suzdaleva, Matej Petrous\",\"doi\":\"10.1109/SISY.2017.8080574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with a modeling of data by several mixtures of different distributions within a task of clustering. This issue can be required from a practical point of view, e.g., for a multi-modal system, which generates measurements described by different distributions. The approach is based on the partition of the data on several parts, the factorization of the joint probability density function according to these parts and the estimation of each conditional mixture separately. Due to the data-based construction of the general model from the estimated components, the most suitable combination of the components is used at each time instant. The illustrative experiments are demonstrated.\",\"PeriodicalId\":352891,\"journal\":{\"name\":\"2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISY.2017.8080574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISY.2017.8080574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文讨论了在聚类任务中由不同分布的几种混合数据建模的问题。这个问题可能需要从实际的角度来看,例如,对于一个多模态系统,它产生由不同分布描述的测量。该方法是基于数据在若干部分上的划分,根据这些部分对联合概率密度函数进行因式分解,并对每个条件混合分别进行估计。由于一般模型是基于估计分量的数据构建的,因此在每个时刻使用最合适的分量组合。给出了说明性实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering with a model of sub-mixtures of different distributions
This paper deals with a modeling of data by several mixtures of different distributions within a task of clustering. This issue can be required from a practical point of view, e.g., for a multi-modal system, which generates measurements described by different distributions. The approach is based on the partition of the data on several parts, the factorization of the joint probability density function according to these parts and the estimation of each conditional mixture separately. Due to the data-based construction of the general model from the estimated components, the most suitable combination of the components is used at each time instant. The illustrative experiments are demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信