{"title":"铁电和层间协同优化与高续航力场效应管的深入分析","authors":"Yuejia Zhou, Zhongxin Liang, Wenpu Luo, M. Yu, Runteng Zhu, X. Lv, Jiachen Li, Qianqian Huang, Fei Liu, Kechao Tang, Ru Huang","doi":"10.1109/IEDM45625.2022.10019465","DOIUrl":null,"url":null,"abstract":"In face of the critical endurance issue, for the first time we take a holistic perspective to co-optimize the ferroelectric materials and interlayer in FeFET. Compared to the common HZO based gate stack, the novel combination of Hf0.95 Al0.05 O2+Al2 O3 enhances the endurance to $\\gt 5 \\times 10 ^{9}$ cycles while maintaining a retention > 10 years. In-depth analysis based on DFT and DQSCV reveal the reduction of interlayer electric field and interface charge trapping as the mechanism of optimization. We also develop a distributed interface trap model to correlate different trapping dynamics with the interlayer property in each device. This work pushes forward the understanding and development of high endurance strategy for FeFET.","PeriodicalId":275494,"journal":{"name":"2022 International Electron Devices Meeting (IEDM)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ferroelectric and Interlayer Co-optimization with In-depth Analysis for High Endurance FeFET\",\"authors\":\"Yuejia Zhou, Zhongxin Liang, Wenpu Luo, M. Yu, Runteng Zhu, X. Lv, Jiachen Li, Qianqian Huang, Fei Liu, Kechao Tang, Ru Huang\",\"doi\":\"10.1109/IEDM45625.2022.10019465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In face of the critical endurance issue, for the first time we take a holistic perspective to co-optimize the ferroelectric materials and interlayer in FeFET. Compared to the common HZO based gate stack, the novel combination of Hf0.95 Al0.05 O2+Al2 O3 enhances the endurance to $\\\\gt 5 \\\\times 10 ^{9}$ cycles while maintaining a retention > 10 years. In-depth analysis based on DFT and DQSCV reveal the reduction of interlayer electric field and interface charge trapping as the mechanism of optimization. We also develop a distributed interface trap model to correlate different trapping dynamics with the interlayer property in each device. This work pushes forward the understanding and development of high endurance strategy for FeFET.\",\"PeriodicalId\":275494,\"journal\":{\"name\":\"2022 International Electron Devices Meeting (IEDM)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM45625.2022.10019465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM45625.2022.10019465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ferroelectric and Interlayer Co-optimization with In-depth Analysis for High Endurance FeFET
In face of the critical endurance issue, for the first time we take a holistic perspective to co-optimize the ferroelectric materials and interlayer in FeFET. Compared to the common HZO based gate stack, the novel combination of Hf0.95 Al0.05 O2+Al2 O3 enhances the endurance to $\gt 5 \times 10 ^{9}$ cycles while maintaining a retention > 10 years. In-depth analysis based on DFT and DQSCV reveal the reduction of interlayer electric field and interface charge trapping as the mechanism of optimization. We also develop a distributed interface trap model to correlate different trapping dynamics with the interlayer property in each device. This work pushes forward the understanding and development of high endurance strategy for FeFET.