Amir Ashtari Gargari, Matteo Pagin, Andrea Ortiz, Nairy Moghadas-Gholian, Michele Polese, Michele Zorzi
{"title":"演示:[SeBaSi]用于自回程的系统级集成访问和回程模拟器","authors":"Amir Ashtari Gargari, Matteo Pagin, Andrea Ortiz, Nairy Moghadas-Gholian, Michele Polese, Michele Zorzi","doi":"10.1109/WoWMoM57956.2023.00061","DOIUrl":null,"url":null,"abstract":"millimeter wave (mmWave) and sub-terahertz (THz) communications have the potential of increasing mobile network throughput drastically. However, the challenging propagation conditions experienced at mmWave and beyond frequencies can potentially limit the range of the wireless link down to a few meters, compared to up to kilometers for sub-6GHz links. Thus, increasing the density of base station deployments is required to achieve sufficient coverage in the Radio Access Network (RAN). To such end, 3rd Generation Partnership Project (3GPP) introduced wireless backhauled base stations with Integrated Access and Backhaul (IAB), a key technology to achieve dense networks while preventing the need for costly fiber deployments. In this paper, we introduce SeBaSi, a system-level simulator for IAB networks, and demonstrate its functionality by simulating IAB deployments in Manhattan, New York City and Padova. Finally, we show how SeBaSi can represent a useful tool for the performance evaluation of self-backhauled cellular networks, thanks to its high level of network abstraction, coupled with its open and customizable design, which allows users to extend it to support novel technologies such as Reconfigurable Intelligent Surfaces (RISs).","PeriodicalId":132845,"journal":{"name":"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demo:[SeBaSi] system-level Integrated Access and Backhaul simulator for self-backhauling\",\"authors\":\"Amir Ashtari Gargari, Matteo Pagin, Andrea Ortiz, Nairy Moghadas-Gholian, Michele Polese, Michele Zorzi\",\"doi\":\"10.1109/WoWMoM57956.2023.00061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"millimeter wave (mmWave) and sub-terahertz (THz) communications have the potential of increasing mobile network throughput drastically. However, the challenging propagation conditions experienced at mmWave and beyond frequencies can potentially limit the range of the wireless link down to a few meters, compared to up to kilometers for sub-6GHz links. Thus, increasing the density of base station deployments is required to achieve sufficient coverage in the Radio Access Network (RAN). To such end, 3rd Generation Partnership Project (3GPP) introduced wireless backhauled base stations with Integrated Access and Backhaul (IAB), a key technology to achieve dense networks while preventing the need for costly fiber deployments. In this paper, we introduce SeBaSi, a system-level simulator for IAB networks, and demonstrate its functionality by simulating IAB deployments in Manhattan, New York City and Padova. Finally, we show how SeBaSi can represent a useful tool for the performance evaluation of self-backhauled cellular networks, thanks to its high level of network abstraction, coupled with its open and customizable design, which allows users to extend it to support novel technologies such as Reconfigurable Intelligent Surfaces (RISs).\",\"PeriodicalId\":132845,\"journal\":{\"name\":\"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WoWMoM57956.2023.00061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoWMoM57956.2023.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Demo:[SeBaSi] system-level Integrated Access and Backhaul simulator for self-backhauling
millimeter wave (mmWave) and sub-terahertz (THz) communications have the potential of increasing mobile network throughput drastically. However, the challenging propagation conditions experienced at mmWave and beyond frequencies can potentially limit the range of the wireless link down to a few meters, compared to up to kilometers for sub-6GHz links. Thus, increasing the density of base station deployments is required to achieve sufficient coverage in the Radio Access Network (RAN). To such end, 3rd Generation Partnership Project (3GPP) introduced wireless backhauled base stations with Integrated Access and Backhaul (IAB), a key technology to achieve dense networks while preventing the need for costly fiber deployments. In this paper, we introduce SeBaSi, a system-level simulator for IAB networks, and demonstrate its functionality by simulating IAB deployments in Manhattan, New York City and Padova. Finally, we show how SeBaSi can represent a useful tool for the performance evaluation of self-backhauled cellular networks, thanks to its high level of network abstraction, coupled with its open and customizable design, which allows users to extend it to support novel technologies such as Reconfigurable Intelligent Surfaces (RISs).