一类非线性微分对策的微分神经网络状态估计

Emmanuel Garcia, Daishi Murano
{"title":"一类非线性微分对策的微分神经网络状态估计","authors":"Emmanuel Garcia, Daishi Murano","doi":"10.1109/ACC.2011.5990779","DOIUrl":null,"url":null,"abstract":"This paper deals with the problem of the state estimation for a certain class of nonlinear differential games, where the mathematical model of this class is completely unknown. Being thus, a Luenberger-like differential neural network observer is applied and a new learning law for its synaptic weights is suggested. Furthermore, by means of a Lyapunov stability analysis, the stability conditions for the state estimation error are established and the upper bound of this error is obtained. Finally, a numerical example illustrates the applicability of this approach.","PeriodicalId":225201,"journal":{"name":"Proceedings of the 2011 American Control Conference","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"State estimation for a class of nonlinear differential games using differential neural networks\",\"authors\":\"Emmanuel Garcia, Daishi Murano\",\"doi\":\"10.1109/ACC.2011.5990779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the problem of the state estimation for a certain class of nonlinear differential games, where the mathematical model of this class is completely unknown. Being thus, a Luenberger-like differential neural network observer is applied and a new learning law for its synaptic weights is suggested. Furthermore, by means of a Lyapunov stability analysis, the stability conditions for the state estimation error are established and the upper bound of this error is obtained. Finally, a numerical example illustrates the applicability of this approach.\",\"PeriodicalId\":225201,\"journal\":{\"name\":\"Proceedings of the 2011 American Control Conference\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2011 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2011.5990779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2011.5990779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了一类数学模型完全未知的非线性微分对策的状态估计问题。为此,采用了Luenberger-like微分神经网络观测器,并提出了一种新的突触权值学习规律。通过Lyapunov稳定性分析,建立了状态估计误差的稳定性条件,得到了该误差的上界。最后,通过数值算例说明了该方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State estimation for a class of nonlinear differential games using differential neural networks
This paper deals with the problem of the state estimation for a certain class of nonlinear differential games, where the mathematical model of this class is completely unknown. Being thus, a Luenberger-like differential neural network observer is applied and a new learning law for its synaptic weights is suggested. Furthermore, by means of a Lyapunov stability analysis, the stability conditions for the state estimation error are established and the upper bound of this error is obtained. Finally, a numerical example illustrates the applicability of this approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信